
AeroDuo: Aerial Duo for UAV-based Vision and Language
Navigation

Ruipu Wu∗
Beihang University

Beijing, China
bastien_wu@buaa.edu.cn

Yige Zhang∗
Beihang University

Beijing, China
yige_zhang@buaa.edu.cn

Jinyu Chen∗
Beihang University

Beijing, China
chenjinyu@buaa.edu.cn

Linjiang Huang†
Beihang University

Beijing, China
ljhuang@buaa.edu.cn

Shifeng Zhang
Sangfor Technologies Inc.

Shenzhen, China
zhangshifeng@sangfor.com.cn

Xu Zhou
Sangfor Technologies Inc.

Shenzhen, China
zhouxu@sangfor.com.cn

Liang Wang
Institute of Automation, Chinese

Academy of Sciences
Beijing, China

wangliang@nlpr.ia.ac.cn

Si Liu
Beihang University

Beijing, China
liusi@buaa.edu.cn

Target Oriented Instruction: Locate a green car parked near a
T-intersection at 30 degrees south-southwest. Next to the T-
intersection, there's a tall building with a red billboard, and a
lake is also nearby.
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Figure 1: In the DuAl-VLN task, the two UAVs operating at distinct altitudes achieve collaborative target search through
language instruction guidance. The high-altitude UAV offers a broader observation range ( ), while the low-altitude UAV
captures finer-grained visual perception of target ( ).

Abstract
Aerial Vision-and-Language Navigation (VLN) is an emerging task
that enables Unmanned Aerial Vehicles (UAVs) to navigate out-
door environments using natural language instructions and visual
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cues. However, due to the extended trajectories and complex ma-
neuverability of UAVs, achieving reliable UAV-VLN performance
is challenging and often requires human intervention or overly
detailed instructions.

To harness the advantages of UAVs’ high mobility, which could
provide multi-grained perspectives, while maintaining a manage-
able motion space for learning, we introduce a novel task called
Dual-Altitude UAV Collaborative VLN (DuAl-VLN). In this task, two
UAVs operate at distinct altitudes: a high-altitude UAV responsible
for broad environmental reasoning, and a low-altitude UAV tasked
with precise navigation. To support the training and evaluation of
the DuAl-VLN, we construct the HaL-13k, a dataset comprising
13, 838 collaborative high-low UAV demonstration trajectories, each
paired with target-oriented language instructions. This dataset in-
cludes both unseen maps and an unseen object validation set to sys-
tematically evaluate the model’s generalization capabilities across
novel environments and unfamiliar targets. To consolidate their
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complementary strengths, we propose a dual-UAV collaborative
VLN framework, AeroDuo, where the high-altitude UAV integrates
a multimodal large language model (Pilot-LLM) for target reason-
ing, while the low-altitude UAV employs a lightweight multi-stage
policy for navigation and target grounding. The two UAVs work
collaboratively and only exchange minimal coordinate information
to ensure efficiency. Experimental results indicate that AeroDuo
achieves an evident 9.71% improvement in success rates compared
to existing single-UAV methods, demonstrating the effectiveness of
dual-altitude collaboration in balancing environmental coverage,
precision, and operational autonomy.

CCS Concepts
• Computing methodologies→ Computer vision tasks; Plan-
ning and scheduling.
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1 Introduction
Vision-Language Navigation (VLN) [15], which aims to enable au-
tonomous agents to navigate based on natural language instruc-
tions, has recently received significant research attention. Early
efforts primarily focused on ground-based agents and have achieved
remarkable progress. In contrast, VLN for Unmanned Aerial Ve-
hicles (UAVs) remains relatively understudied. UAV-based VLN
poses greater challenges due to extended navigation trajectories
and higher degrees of motion freedom compared to ground-based
scenarios. Existing approaches [30, 34, 54] for UAV-based VLN of-
ten rely on iterative human-agent dialogues [13], highly detailed
route descriptions [19], or real-time human assistance [54], which
inevitably increase human workload and restrict operational ef-
ficiency. Consequently, enabling UAVs to accomplish VLN tasks
solely through relatively simple instructions, which only describe
target orientation, regions, and surrounding features, could signif-
icantly enhance practicality. However, this remains challenging
for a single UAV agent, as it struggles to simultaneously achieve
high-altitude perspective for coarse-grained regional localization
and low-altitude perspective for fine-grained target observation.

To tackle this challenge, we introduce a novel UAV-based VLN
task called Dual-Altitude UAV Collaborative Vision-Language Nav-
igation (DuAl-VLN). In this task, two UAVs operate at different alti-
tudes: one at high altitude for wide-area environmental coverage
and the other at low altitude for detailed, close-range observation.
The two UAVs collaboratively optimize navigation through dynamic
information exchange and joint path planning, leveraging their
complementary capabilities: high-altitude contextual awareness
enhances strategic decision-making, while low-altitude detailed
sensing ensures real-time obstacle avoidance and safe navigation

in cluttered environments. This dual-altitude framework signifi-
cantly enhances navigation efficiency by balancing macro-scale
environmental understanding with micro-scale flight safety.

To advance this task, we curate a dataset, HaL-13k, based on the
OpenUAV platform [54] with 13, 838 synchronized dual-altitude
trajectories across 14 scenarios. This dataset is generated using a
two-stage trajectory creation process: first, low-altitude UAV trajec-
tories are obtained via obstacle-aware path planning; subsequently,
high-altitude UAV paths are collected under strict visibility con-
straints. The constraints ensure visual overlap with the low-altitude
trajectories, thereby enabling effective autonomous exploration for
high-altitude UAVs. HaL-13k offers navigation instructions that ex-
clusively describes target orientation, visual features, and surround-
ing environmental context, along with paired high-low trajectories
and multi-modal sensor streams. This dataset is tailored to inves-
tigate altitude-dependent perception dynamics and collaborative
decision-making in the dual-UAV system.

To address the challenges of cooperative navigation, where in-
efficient information exchange can cause trajectory conflicts, we
propose AeroDuo. This collaborative UAV-VLN framework syner-
gizes multimodal large language models and lightweight models
tailored for each UAV’s role. For the high-altitude UAV, we in-
troduce the Pilot-LLM, which leverages pre-trained MLLMs’ ca-
pabilities to enable effective instruction understanding and target
reasoning. Specifically, Pilot-LLM processes historical flight tra-
jectories and constructs a global orthographic projection map to
dynamically infer coarse-grained target regions. A mask prediction
module is further integrated into the MLLM, prioritizing feasible
areas for the low-altitude UAV’s detailed exploration. For the low-
altitude UAV, we deploy a navigation policy trained in the Isaac
Sim [40] simulation environment, combining a lightweight obstacle
avoidance controller and a visual grounding model to precisely
localize target objects. Crucially, the two UAVs communicate only
minimal coordinate information, significantly reducing bandwidth
requirements while maintaining collaborative coherence. Experi-
mental results demonstrate that our AeroDuo achieves a significant
improvement of 9.71% in navigation success rates compared to
single-UAV baselines on the validation set of the HaL-13k dataset,
which demonstrates the effectiveness of dual-altitude UAV collabo-
ration for VLN tasks, opening new possibilities for aerial embodied
AI systems.

2 Related Works
2.1 Ground-based Vision-Language Navigation
Ground-based VLN has seen rapid advances, with datasets [1, 6]
and benchmarks [7, 25, 28, 29, 43] enabling broader task coverage
through diverse instructions and heterogeneous environments. Re-
lated research has delved into data augmentation techniques [15,
53, 59, 61], decision-making mechanisms [62], the utilization of
historical context [8, 10, 16, 17, 24, 27], and representations of
three-dimensional space. Furthermore, the rapid advancement of
LLMs [11, 51] and MLLMs [21, 31, 45, 65] has inspired action-
prediction methods like [5]. Recent works [9, 32, 44] integrate
LLMs into planning, while others [60, 64] propose unified mod-
els for language and environmental context. Compared to ground-
based VLN, UAV-based VLN exhibits a longer trajectory length and
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higher degrees of motion freedom, presenting significantly greater
challenges.

2.2 UAV Navigation
Current UAV navigation research has mainly focused on visual
perception [4, 14, 20, 26, 36, 39, 50] and collision avoidance [49, 55],
while multimodal visual-linguistic UAV navigation remains emerg-
ing. Recent efforts [34, 35] introduced UAV-VLN frameworks using
detailed textual guidance. AerialVLN [34] provides a large-scale
dataset with an effective baseline, and STMR [19] builds on it with
a zero-shot LLM-based framework using a Semantic-TopoMetric
Representation for spatial reasoning. Other works have contributed
infrastructure datasets, including CityNav [30], AVDN [13], and
OpenFly [18]. OpenUAV [54], in particular, offers a UAV dynam-
ics simulator and the UAV-Need-Help evaluation protocol. Despite
these advances, current UAV-based VLN research has not explored
multi-agent collaboration for enhanced navigation performance.

2.3 Multi Agent Navigation
Multi-agent collaboration has been widely explored, with early
work focusing on reinforcement learning for autonomous coordi-
nation in structured environments [2, 38, 42, 46]. Recent advances
leverage LLMs to assign roles via prompts, enabling language-based
interaction [23]. In ground-based navigation, studies explore multi-
agent VLN in indoor environments [66] and cooperative target
search in games [63]. By contrast, UAV-focused research centers
on swarm formation and obstacle avoidance [12, 41], without ad-
dressing multimodal understanding. However, Multi-agent VLN
for UAVs remains unexplored, further challenged by UAVs’ large
operational space and degrees of motion freedom.

3 Dual-Altitude UAV Collaborative
Vision–Language Navigation

In this paper, we introduce a novel UAV-based VLN task, Dual-
Altitude UAV collaborative VLN (DuAl-VLN), that leverages dual-
altitude UAVs to achieve collaborative perception and decision-
making. This task strategically balances UAVs’ inherent high mo-
bility with constrained operational spaces, creating an optimized
environment for model learning while preserving aerial maneuver-
ability advantages. We detail the task setup of the DuAl-VLN in
Sec. 3.1. To support this task, we develop the first dual-UAV VLN
dataset, HaL-13k, which provides concise instructions of targets,
featuring dual-altitude trajectories with multi-modal sensor data
(Sec. 3.2).

3.1 Task Formulation
At the beginning of each episode, the low-altitude UAV 𝑈𝑙 and the
high-altitude UAV 𝑈ℎ are initialized at positions 𝑃𝑙0 = (𝑥𝑙0, 𝑦

𝑙
0, 𝑧

𝑙
0)

and 𝑃ℎ0 = (𝑥ℎ0 , 𝑦
ℎ
0 , 𝑧

ℎ
0 ), respectively, with 𝑥

𝑙
0 = 𝑥ℎ0 , 𝑦

𝑙
0 = 𝑦ℎ0 , and

𝑧ℎ0 > 𝑧𝑙0. The dual-UAV system receives a target-oriented linguistic
instruction describing the target’s direction, characteristics, and
surrounding environmental context. To reflect the difference in
reasoning frequency, we denote the decision time steps for the
low-altitude UAV 𝑈𝑙 as 𝑡 and for the high-altitude UAV 𝑈ℎ as 𝜏 .
Specifically, at each time step 𝑡 , 𝑈𝑙 captures forward-facing visual
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Low Altitude UAV Trajectory 
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Figure 2: Illustration of dataset statistics and trajectory collec-
tion process forHaL-13k. (a)We optimize the paths fromUAV-
needs-Help [54] to maintain an effective exploration altitude
for the low-altitude UAV. (b) We randomly sample paths of
the high-altitude UAV that obey visibility constraints, ensur-
ing that the high-altitude UAV maintains visual coverage of
the low-altitude UAV’s route.

image 𝐼 𝑙𝑡 and omnidirectional point cloud data 𝑉 𝑙𝑡 . At each time
step 𝜏 , 𝑈ℎ captures a BEV observation 𝐼ℎ𝜏 along with a Lidar point
cloud map 𝑉ℎ𝜏 , both covering the same field of view. Leveraging
these multi-modal inputs, the UAVs dynamically adjust their flight
trajectories by predicting either subsequent waypoint sequences or
velocity profiles supported by Airsim [48]. A navigation episode
is deemed successful if 𝑈𝑙 comes within a distance threshold 𝑑 of
the target location 𝑝𝑑 . A navigation episode is considered failed
if either the 𝑈𝑙 exceeds the navigation-time upper-bound without
reaching the target or the UAVs collide with obstacles.

3.2 HaL-13k Dataset
To advance the DuAl-VLN task, we deliberately construct a dataset,
HaL-13k, upon the OpenUAV [54] platform, which could provide
realistic UAV sensory data, diverse environments, and dynamic
flight characteristics. However, existing RL-based multi-agent col-
laboration approaches, which rely on frequent environmental inter-
actions, impose prohibitive computational costs for simulating. To
overcome this limitation, we propose to collect expert continuous
trajectory data for coordinated high-low UAV pairs. To build the
trajectory pairs, we optimize the navigation paths from [54] to
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Figure 3: The AeroDuo framework integrates multiple data sources to achieve precise UAV navigation. We input a global
orthophoto map, UAV historical trajectories, and linguistic instructions into the MLLM decoder, Pilot-LLM. Special mask tokens
are employed to predict the probability distribution of target locations. Theflight target is obtained from the resulting probability
map, which is subsequently used for pathfinding by low-altitude UAV. To enhance the geospatial modeling capabilities of the
MLLM, we pretrain it using auxiliary tasks such as referring segmentation and depth estimation.

maintain an effective exploration altitude for the low-altitude UAV,
while generating trajectories with optimal perspective for the high-
altitude UAV. Specifically, for the low-altitude UAV path planning,
we first construct an occupancy map from point clouds. The A*
algorithm [22] is then used to compute optimized navigation paths
that conform to these occupancy constraints. For the high-altitude
UAV, we randomly sample flight paths that guarantee full visual cov-
erage of the low-altitude UAV’s route, thereby maintaining optimal
observational perspectives throughout the mission.

As shown in Fig. 2, this generation strategy yields a dataset of
13, 838 collaborative trajectory pairs, each annotated with target-
oriented language instructions for search target, without highly
detailed route descriptions [19], or real-time human assistance [54].

For the validation set of HaL-13k, we partition it into the unseen
map set and the unseen object set, ensuring rigorous evaluation of
generalization to novel layouts and unfamiliar objects.

• UnseenMap Set consists of environments absent from the train-
ing data. We sample 2 scenes as unseen maps and extract all
associated trajectories for testing, resulting in 175 episodes.

• Unseen Object Set comprises trajectories from training-familiar
scenes but introduces object categories never encountered during
training, yielding 175 test episodes.

4 AeroDuo: Aerial Duo for UAV-based VLN
4.1 Overview of AeroDuo
We propose a dual-altitude UAV collaborative VLN framework,
AeroDuo, which integrates MLLMs for high-altitude decision mak-
ing with lightweight multi-stage policies for low-altitude naviga-
tion. In this section, we will provide a detailed overview of each
component of AeroDuo. At timestep 𝜏 , following an exploration
request from the low-altitude UAV 𝑈𝑙 , the high-altitude UAV 𝑈ℎ
initiates its decision-making phase. For clarity, we denote 𝑈ℎ ’s de-
cision timesteps as 𝜏 in the following part. During this phase, 𝑈ℎ
employs an MLLM-based decoder, Pilot-LLM, to predict a target
probability map M𝜏 and generates corresponding environmen-
tal depth information 𝐷̂ℎ𝜏 . These outputs are then transmitted to
𝑈𝑙 . Equipped withM𝜏 and 𝐷̂ℎ𝜏 ,𝑈𝑙 performs environmental explo-
ration using the Multi-Stage Pathfinder (MSP). Upon completing
the exploration,𝑈𝑙 requests the next target from𝑈ℎ to continue the
navigation process. Detailed descriptions of Pilot-LLM and MSP
are provided in Sec. 4.2 and Sec. 4.3.

4.2 Pilot-LLM on High UAV
The primary advantage of high-altitude UAVs lies in their wide-
field observation capability, which enhances the system’s efficiency
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in both pinpointing target areas and planning subsequent naviga-
tion paths. Previous methods process UAV observations as video
frames [34, 54], which usually suffer from two critical limitations.
First, video sequences prioritize temporal ordering of exploration
snapshots, which obscures the spatial relationships between histor-
ical observations. Consequently, when key regions span multiple
frames, the model would struggle to determine the target loca-
tion. Second, the lack of explicit spatial coordinate cues in video
sequences hinders precise environmental mapping, resulting in un-
reliable location predictions and compromised results. To alleviate
these issues, we propose constructing a global map that integrates
historical observations, thereby offering a holistic perspective and
a unified spatial coordinate system for the dual-UAV system.

Global Map Construction. Although the high-altitude UAV cap-
tures RGB observations in a BEV-like fashion, directly stitching
these views into a coherent global map remains non-trivial due
to perspective distortions. To address this issue, we employ an or-
thophoto generation pipeline. Specifically, we first reconstruct an
elevation map of the ground environment from the accumulated
point clouds𝑉ℎ1:𝜏 . Then, using the UAV’s trajectory 𝑝

ℎ
𝜏 , we estimate

the extrinsic parameters of the onboard RGB camera and reproject
the BEV observations 𝐼ℎ1:𝜏 to the ground plane. These reprojected
views are then stitched together to produce the global orthographic
map 𝐺𝜏 . Meanwhile, the current UAV position 𝑝ℎ𝜏 is also used to
compute the global depth map 𝐷̂ℎ𝜏 with respect to the UAV’s camera
plane. The overall process is summarized as:

𝐺𝜏 , 𝐷̂
ℎ
𝜏 = 𝑜𝑟𝑡ℎ𝑜 (𝐼ℎ1:𝜏 , 𝑝

ℎ
1:𝜏 ,𝑉

ℎ
1:𝜏 ). (1)

We limit the stitching to a maximum of five historical images. The
orthophoto map will be resized to a pre-defined size and then fed
into the Pilot-LLM as an integrated historical observation. Please
refer to the supplementary material for more details.

Pilot-LLM.. To enable effective perception and decision making
with multimodal inputs for the dual-UAV system, we take advan-
tage of the reasoning ability of multimodal large language models
(MLLMs) to handle various input types and generate pilot guidance
in a unified framework, Pilot-LLM.

At time step 𝜏 , the input to Pilot-LLM consists of three key
components: the orthophoto map𝐺𝜏 , the historical trajectory 𝑝ℎ1:𝜏 ,
and the navigation instruction. For the orthophoto map 𝐺𝜏 , we
tokenize it into visual tokens 𝑮̃𝜏 ∈ R𝑁×𝐷 using the visual encoder
𝑓𝑣 , where 𝑁 and 𝐷 represents the number and the dimension of
visual tokens. For the historical trajectory 𝑝ℎ1:𝜏 , we first project
it onto the coordinate system of 𝐺𝜏 , denoted as 𝑝ℎ1:𝜏 , and then
encode these positions into trajectory embeddings 𝑿𝑝𝜏 using the
textual tokenizer. The navigation instruction 𝑋 is also processed
through the LLM’s textual tokenizer to generate embeddings 𝑿̃ .
These tokens are then flattened, concatenated, and subsequently
fed into the Pilot-LLM.

Given these inputs, Pilot-LLM ought to predict the precise target
location for the dual-UAV system. However, directly predicting spa-
tial coordinates of target locations in textual format would result in
significant errors, because LLMs struggle with explicit geospatial
modeling, as highlighted in [3, 56]. Instead of outputting precise
coordinates, we propose to predict a probability distribution map

𝐺𝜏 that emphasizes candidate target regions. This design offers
two clear advantages. First, the flight target for UAVs should repre-
sent a feasible area rather than a single coordinate point, thereby
preserving their exploration ability. Second, by predicting a map,
the spatial modeling capacity of Pilot-LLM can be enhanced by
incorporating auxiliary tasks, such as referring segmentation and
depth estimation, as detailed later in Sec. 4.4.

Formally, to generate a distribution map by Pilot-LLM, we in-
corporate learnable special tokens 𝑴 ∈ R𝑁×𝐷 , where each token
corresponds to a unique spatial coordinate in the orthophoto map
𝐺𝜏 . The embedding at the coordinate (𝑖, 𝑗) in 𝑴 is defined as:

𝑴 (𝑖, 𝑗) = 𝝆𝑖, 𝑗 + 𝜼, (2)

where 𝝆𝑖, 𝑗 ∈ 𝑅1×𝐷 denotes the positional embedding at coordinate
(𝑖, 𝑗) in 𝑓𝑣 and 𝜼 is a trainable embedding. Here, we use the same
coordinate representation as 𝑓𝑣 to ensure accurate mask prediction.
Finally, Pilot-LLM takes [𝑮̃𝜏 ,𝑿𝑝𝜏 , 𝑿̃ ,𝑴] as input, and the output
features 𝑴̃𝜏 corresponding to the 𝑴 are decoded by a lightweight
mask decoder 𝑓𝑚 to predict the probability of target location:

M𝜏 = sigmoid(𝑓𝑚 (𝑴̃𝜏 )), (3)

whereM𝜏 is a target location probability map with the same spatial
size as 𝐺𝜏 . After that, the low-altitude 𝑈𝑙 will take the M𝜏 and the
global depth map 𝐷̂ℎ𝜏 for explorative path finding.

For𝑈ℎ , its high flight altitude mitigates collision risks while offer-
ing an extensive observational field, enabling efficient surveillance
of target-proximate areas through orientation-optimized directional
movement. During the navigation,𝑈ℎ first computes the flight di-
rection and step length using instructions and compass data, then
follows the predictions throughout subsequent operations.

4.3 Multi-Stage Pathfinder on Low UAV
Upon completion of environmental mapping and target probability
estimation by the high-altitude UAV𝑈ℎ , the low-altitude UAV𝑈𝑙
performs explorative navigation guided by 𝑈ℎ to find the target
instance. To enable a safe and efficient environment exploration,
we propose a Multi-Stage Pathfinder (MSP) for 𝑈𝑙 . As shown in
Fig. 4, the MSP pipeline executes navigation through three core
stages: key waypoint decision, collision-free navigation, and target
localization.

Key Waypoint Decision. In this stage, the low-altitude UAV, lo-
cated at 𝑝𝑙𝑡 = [𝑥𝑙𝑡 , 𝑦𝑙𝑡 , 𝑧𝑙𝑡 ], first determines its sub-goal by computing
the centroid of the probability distributionM𝜏 to effectively miti-
gate errors caused by outliers:

[𝑥𝑐𝜏 , 𝑦𝑐𝜏 ] =
𝐻∑︁
𝑖

𝐻∑︁
𝑗

M𝜏 (𝑖, 𝑗) · [𝑖, 𝑗] . (4)

Since the high-altitude and low-altitude UAVs start from the same
horizontal coordinate (albeit at different altitudes) and the trajectory
of the high-altitude UAV is known, it is straightforward to trans-
form the coordinates [𝑥𝑐𝜏 , 𝑦𝑐𝜏 ] into the global coordinate system.
This transformation results in the predicted endpoint [𝑥𝑐𝜏 , 𝑦𝑐𝜏 , 𝑧𝑙𝑡 ].
With the sub-goal established, the UAV generates a sequence of
key waypoints Q𝜏 to navigate toward the target. During this pro-
cess, leveraging 𝑈ℎ ’s wide-range perspective, which provides a
comprehensive understanding of the environmental context, would
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significantly improve 𝑈𝑙 ’s exploration efficiency. To achieve this,
we first construct the occupancy map 𝑜𝑐𝑐𝜏 based on the global
depth map 𝐷̂ℎ𝜏 . An approximate navigation path is then derived by
optimizing 𝑜𝑐𝑐𝜏 using the A* algorithm [22]. The occupancy map
𝑜𝑐𝑐𝜏 is calculated as follows:

𝑜𝑐𝑐𝜏 = 𝑢 (𝐷̂ℎ𝜏 − Δ𝑧𝜏 ), (5)

where Δ𝑧𝜏 denotes the altitude difference between the high- and
low-altitude UAVs, and 𝑢 (·) denotes the unit step function as:

𝑢 (𝑥) = 1𝑥≥0 . (6)

The A* search algorithm is performed on 𝑜𝑐𝑐𝜏 using the Manhattan
distance as the heuristic function to search a trajectory from 𝑝𝑙𝑡 to 𝑝

𝑐
𝜏 .

Furthermore, an erosion operation is applied to the occupancy map
to allow the A* algorithm to search for paths at a safer distance from
obstacles. Based on the length of the trajectory, the trajectory is
equally segmented into 𝐾 key waypoints, denoted as Q𝜏 = {𝑝𝜏1:𝐾 }.

Collision-Free Navigation. Due to the low spatial resolution of
𝑜𝑐𝑐𝜏 , relying solely on the computed waypoints Q𝜏 = {𝑝𝜏1:𝐾𝜏

} from
𝐷̂ℎ𝜏 often leads to collisions. To mitigate this issue, we employ an
RL-based collision-free Navigator, inspired by [55]. At timestep 𝑡 of
𝑈𝑙 , the Navigator receives the point cloud V𝑙𝑡 , the subgoal 𝑝

𝜏
𝑘
∈ Q𝜏 ,

and the ego status, which includes the current position 𝑝𝑙𝑡 and the
current velocity 𝑣𝑙𝑡 , for the next timestep’s velocity prediction. To
efficiently encode V𝑙𝑡 , we adopt a 3D ray-casting strategy. There-
after, we feed the encoded point clouds 𝑉 𝑙𝑡 and the other inputs
into a multi-layer perceptron (MLP) to predict the subsequent ve-
locity 𝑣𝑙

𝑡+1. The network employs the PPO [47] algorithm for train-
ing, with a reward function that incorporates obstacle avoidance,
penalties for velocity fluctuations, and incentives for reducing the
distance to the target as in [55]. To accelerate the training process,
we employed Isaac Sim [40] as the training simulator, leveraging its
high-speed parallel simulation. Since the navigator relies solely on
point cloud data, it facilitates seamless adaptation across different
simulated environments and real-world scenarios. More details are
presented in the supplementary material.

Target Localization. During navigation alongQ𝜏 , the low-altitude
UAV 𝑈𝑙 continuously searches for the target and terminates its ex-
ploration once the target is successfully detected. Otherwise, if
𝑈𝑙 reaches the end of Q𝜏 without detection, it will request new
navigation guidance from 𝑈ℎ . We follow [54] to adopt Ground-
ingDINO [33] as the detector 𝑓𝑔 , enabling target localization based
on textual instructions. The visual grounding process operates
asynchronously with navigation: after each detection attempt is
completed, 𝑓𝑔 is immediately applied to the latest observation from
𝑈𝑙 . The exploration terminates once the confidence score of the
detected bounding box exceeds a predefined threshold.

4.4 Training Process of Pilot-LLM
In this section, we present the training pipeline of Pilot-LLM, which
consists of a pretraining stage and a finetuning stage. The pretrain-
ing stage aims to enhance the general visual and geospatial mod-
eling ability of Pilot-LLM. In the fine-tuning stage, Pilot-LLM is
trained to localize the exploration areas based on BEV observations.

Isaac Sim
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Figure 4: Overview of Multi-Stage Pathfinder (MSP) on low-
altitude UAV, including successive stages of Key Waypoint
Decision, Collision-Free Navigation and Target Localization.

Pretraining Stage. Since Pilot-LLM needs to locate target regions
based on navigation instructions, it requires strong cross-modal
understanding capabilities. While general MLLMs provide a solid
foundation for this task, they lack two critical capabilities: First,
the observations 𝑈ℎ consist of BEV images. Due to the limited
amount of BEV data in the general MLLM training, existing models
struggle to cross-modal understanding from a BEV perspective.
Second, predicting key navigation regions requires robust spatial
reasoning ability, which helps to understand whether structures or
environmental elements may hinder navigation. To enhance these
capabilities, we introduce a pretraining phase for Pilot-LLM. (a)
To boost the model’s general perception ability, we first train the
Pilot-LLM on referring segmentation and depth estimation based
on the RefCOCO dataset [58]. In our method, we employ the Depth
Anything v2 [57] to generate depth maps for training.

After training on the general dataset, (b) to enhance the ability of
BEV image understanding, we train the model using referring seg-
mentation on BEV images. Multiple text templates are then used to
generate descriptive captions for these objects, resulting in a dataset
of 850, 894 image-text pairs. During training, the predicted mask
is generated by 𝑓𝑚 using 𝑴̃ . (c) To improve the model’s geospatial
perception, we train the Pilot-LLM for depth estimation from BEV
images. A separate decoder is employed to ease learning difficulty.

Notably, we train the Pilot-LLM on mixed data from both tasks.
This pretraining strategy ensures Pilot-LLM develops both BEV-
aware vision-language alignment and precise spatial reasoning for
navigation. More details are shown in the supplementary materials.

Finetuning Stage. After the pretraining stage, the Pilot-LLMneeds
to further locate the key exploration area based on language instruc-
tions. Here, we first initialize the mask decoder with the parameters
of the segmentation decoder in the pre-training stage, as referring
segmentation and mask prediction are similar tasks. To generate the
ground truth labels for training, we sample a pair of high-low UAV
waypoints at a given time step 𝑡 . The low-altitude UAV’s position at
a future time step 𝑡 +𝑘 is used as the target. A Gaussian distribution
is then centered at this future position to produce a probability
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Table 1: The main comparison on the validation set of HaL-13k. For fair comparison, we train these baseline methods on the
proposed dataset of HaL-13k.

Method Unseen Map Unseen Object

SST ↑ SR ↑ SPL ↑ OSR ↑ NE ↓ SST ↑ SR ↑ SPL ↑ OSR ↑ NE ↓
Random 0.00 0.00 0.00 0.00 199.42 0.00 0.00 0.00 0.00 199.25
CMA [34] 0.00 0.00 0.00 0.57 166.31 0.00 0.00 0.00 0.57 179.30
TravelUAV [54] 0.57 0.57 0.57 1.14 152.20 0.56 0.57 0.52 2.86 160.16
TravelUAV (L1 assistant) 6.48 6.86 5.89 17.14 107.91 5.31 5.71 5.05 10.29 140.42
AeroDuo 14.63 16.57 13.86 28.57 84.31 13.54 14.86 13.35 19.43 108.66

distribution map. If the target position at 𝑡 + 𝑘 falls outside the or-
thophoto map, we instead assign the nearest valid point within the
map as the surrogate target position. After that, an occupancy mask
is applied to suppress infeasible areas by setting their probabilities
to zero. Finally, the probability map is normalized to obtain the final
ground truth label for the low-altitude UAV. We employ a similar
strategy to obtain the ground truth label for the high-altitude UAV,
with the objective shifted to predicting its heading and step length.

5 Experiments
5.1 Experiment Setup

Implementation Details. Our Pilot-LLM framework builds upon
the visual projector 𝑓𝑣 and LLM backbone from Qwen2-VL [52].
The mask prediction head consists of two linear layers followed by
two upsampling layers, aiming to expand the output resolution. For
optimization, we employ the AdamW [37] optimizer with a cosine
learning rate scheduler, initialized at 5 × 10−5. During training,
we freeze the visual projector and fine-tune the MLLM using the
low-rank adaptation (LoRA). The mask and depth prediction tasks
are optimized using binary cross-entropy loss and MSE loss, respec-
tively. The low-altitude UAV𝑈𝑙 operates at a control frequency of
10 Hz, with each time step 𝑡 spanning 0.1 seconds.

Evaluation Metrics. We utilize the following 5 metrics to evaluate
the performance of the navigation model:

• SR: Success Rate. SR measures the percentage of tasks in which
the UAV successfully halts within a 20 m radius of the target.

• SPL: Success rate weighted by Path Lengh. SPL combines task
success with path efficiency by multiplying success rate by the
ratio of optimal to actual path length of the low-altitude UAV.

• SST: Success rate weighted by Search Time. SST measures nav-
igation time efficiency. It is calculated as: 𝑆𝑆𝑇 = 𝑆 × (𝑇 ∗ ÷
max(𝑇,𝑇 ∗)) where 𝑇 is the target search simulator time, and
𝑇 ∗ is the navigation time for the ground-truth trajectory.

• OSR: Oracle Success Rate. OSRmeasureswhether the UAV reaches
a 20 m radius of the target along the trajectory, even if it does
not stop at the final destination.

• NE: Navigation Error. NE measures the distance between the
stop location to the destination.

We take the SST and SR as the main metric for DuAl-VLN.

5.2 Main Comparisons
Comparison Baselines. To validate the effectiveness of our pro-

posed algorithm, we establish both single-UAV and multi-UAV base-
line methods. We compare our method with the following four
baseline approaches:
• Random. The UAV randomly selects an action from four possible
directions: forward, left, right, up, or down.

• Cross-Modal Attention (CMA) model. A Navigation model
proposed in AerialVLN [34], which employs a bi-directional
LSTM to jointly process visual inputs and instruction compre-
hension, predicting the next five waypoints for navigation.

• TravelUAV [54]. An LLM-based UAV navigation model intro-
duced by [54]. In TravelUAV, the LLM predicts a long-term way-
point, while an LSTM model fills in the intermediate waypoints.

• TravelUAV (L1 assistant) [54]. A variant of TravelUAV en-
hanced with the L1-level assistant that provides oracle guidance.
At each step, the assistant helps to predict the next action by com-
paring the UAV’s position and orientation with the ground-truth
trajectory, ensuring the UAV stays on the correct path.
As shown in Table 1, target-oriented Vision-Language Navi-

gation (VLN) under real-flight conditions in OpenUAV remains
a highly challenging task. Existing single-UAV methods, such as
CMA [34] and TravelUAV [54], achieve only marginal success and
frequently fail to reach the target region. This highlights their
limitations in spatial scene understanding and real-world obsta-
cle avoidance. To further assess the performance upper bound,
we include TravelUAV (L1 Assistant), a better-performing variant
augmented with oracle-level guidance based on ground-truth tra-
jectories. While it offers improved navigation performance, it still
falls short in generalizing to long-horizon planning under natural
language instructions.

In contrast, our AeroDuo achieves significantly higher success
rates and SST across all evaluation splits. It reaches 16.57% SR and
14.63% SST on unseen maps, and 14.86% SR and 13.54% SST on
unseen objects, demonstrating the advantage of dual-altitude col-
laboration in complex real-world environments, marking a solid
step toward practical UAV-VLN systems using only target descrip-
tion instructions.

5.3 Ablation Study
We conduct an ablation study to evaluate the contribution of each
individual technique. The results are summarized in Table 2, where
the following four techniques are examined: MLLM pretraining,
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Table 2: The ablation study on the validation set of HaL-13k.

Method Average Unseen Map Unseen Object

Pretrain GMC KWD CFN SST ↑ SR ↑ SST ↑ SR ↑ SPL ↑ OSR ↑ NE ↓ SST ↑ SR ↑ SPL ↑ OSR ↑ NE ↓
✓ 1.34 1.43 1.71 1.71 1.62 3.43 146.08 0.97 1.14 0.98 1.71 199.78

✓ ✓ 2.08 2.29 3.15 3.43 2.97 6.29 107.95 1.02 1.14 0.99 4.57 149.99
✓ ✓ ✓ 12.75 14.29 17.27 19.43 16.44 32.00 78.55 8.24 9.14 8.12 10.86 126.80
✓ ✓ ✓ 8.08 8.86 8.57 9.14 8.13 24.57 98.89 7.59 8.57 7.30 11.43 135.40
✓ ✓ ✓ ✓ 14.08 15.71 14.63 16.57 13.86 28.57 84.31 13.54 14.86 13.35 19.43 108.66

Figure 5: Comparison of UAV target search performance. All
methods start from the same take-off position and search
for the same target. Left: Our method completes the search
without any collisions. Right: TravelUAV and CMA methods
result in collisions during the search process.

global map construction (GMC), key waypoint decision (KWD), and
collision-free navigation. In the first rows, the Pilot-LLM without
GMC employs the original video encoder [52] to observe navigation
history. The target distribution is predicted on the current BEV
image of 𝑈ℎ . The baseline result indicates that relying solely on
the CFN leads to poor performance. Comparatively, leveraging the
MLLM pretraining and GMC significantly improves the prediction
quality of the MLLM, resulting in an 11.41% increase in SST. In
terms of the post-processing and execution of the predicted target
point, the results show that the KWD and CFN are critical for the
reliable navigation and successful target localization.

5.4 Qualitative Analysis
Trajectory Visualization. As shown in Fig. 5, compared to single-

UAV baseline methods, CMA [34] and TravelUAV [54], our method
can accurately locate the target region and plan the flight motion
over a relatively long horizon. The two baseline methods both suffer
from the collision, failing in most cases.

Figure 6: Examples of navigation scenarios and predicted
target regions. Left: Orthographic maps and the trajectories
of UAV. Right: Predicted heatmaps by Pilot-LLM.

Target Probability Map Prediction. Fig. 6 shows the predicted
probability map, where our AeroDuo effectively identifies the desti-
nation based on the provided instruction. This highlights the strong
capacity of our method to interpret environments from the ortho-
graphic map and align observations with complex instructions.

6 Conclusion
In this paper, we propose DuAl-VLN, a dual-altitude UAV collab-
oration task designed to address vision-language navigation chal-
lenges in aerial environments. To support this task, we collected the
HaL-13k dataset, containing 13,838 synchronized high-low-altitude
trajectories, enabling research on altitude-dependent perception
and coordination. We present a novel framework, AeroDuo, to han-
dle the DuAl-VLN task. It integrates a high-altitude Pilot-LLM for
semantic mapping and a low-altitude agent for obstacle-aware nav-
igation. Experiments show significantly superior success rates over
single-UAV baselines, validating collaborative advantages. These
findings validate the effectiveness of dual-altitude collaboration
and offer a promising direction for aerial embodied AI systems.
Future efforts will focus on optimizing the execution efficiency and
scalability.



AeroDuo: Aerial Duo for UAV-based Vision and Language Navigation MM ’25, October 27–31, 2025, Dublin, Ireland

References
[1] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünder-

hauf, Ian Reid, Stephen Gould, and Anton Van Den Hengel. 2018. Vision-and-
language navigation: Interpreting visually-grounded navigation instructions in
real environments. In CVPR.

[2] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław
Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris
Hesse, et al. 2019. Dota 2 with large scale deep reinforcement learning. arXiv
(2019).

[3] Prabin Bhandari, Antonios Anastasopoulos, and Dieter Pfoser. 2023. Are large
language models geospatially knowledgeable?. In Proceedings of the 31st ACM
International Conference on Advances in Geographic Information Systems. 1–4.

[4] Ilker Bozcan and Erdal Kayacan. 2020. AU-AIR: A Multi-modal Unmanned Aerial
Vehicle Dataset for Low Altitude Traffic Surveillance. arXiv preprint (2020).

[5] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen,
Krzysztof Choromanski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea
Finn, et al. 2023. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. arXiv preprint arXiv:2307.15818 (2023).

[6] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner,
Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. 2017. Matterport3D:
Learning from RGB-D Data in Indoor Environments. 3DV (2017).

[7] Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. 2019.
Touchdown: Natural language navigation and spatial reasoning in visual street
environments. In CVPR.

[8] Jinyu Chen, Chen Gao, Erli Meng, Qiong Zhang, and Si Liu. 2022. Reinforced
structured state-evolution for vision-language navigation. In CVPR.

[9] Jiaqi Chen, Bingqian Lin, Ran Xu, Zhenhua Chai, Xiaodan Liang, and Kwan-Yee K
Wong. 2024. Mapgpt: Map-guided prompting for unified vision-and-language
navigation. arXiv preprint arXiv:2401.07314 (2024).

[10] Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, and Ivan Laptev. 2021. History
aware multimodal transformer for vision-and-language navigation. NeurIPS
(2021).

[11] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang,
Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. 2023.
Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality. See
https://vicuna. lmsys. org (accessed 14 April 2023) 2, 3 (2023), 6.

[12] Stepan Dergachev and Konstantin Yakovlev. 2021. Distributed Multi-Agent
Navigation Based on Reciprocal Collision Avoidance and Locally Confined Multi-
Agent Path Finding. In CASE.

[13] Yue Fan,Winson Chen, Tongzhou Jiang, Chun Zhou, Yi Zhang, and Xin EricWang.
2023. Aerial Vision-and-Dialog Navigation. In Findings of the Association for
Computational Linguistics: ACL 2023. Association for Computational Linguistics,
Toronto, Canada, 3043–3061.

[14] Yue Fan, Shilei Chu, Wei Zhang, Ran Song, and Yibin Li. 2020. Learn by observa-
tion: Imitation learning for drone patrolling from videos of a human navigator.
In IROS.

[15] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-
Philippe Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and Trevor
Darrell. 2018. Speaker-Follower Models for Vision-and-Language Navigation.
NeurIPS (2018).

[16] Chen Gao, Jinyu Chen, Si Liu, Luting Wang, Qiong Zhang, and Qi Wu. 2021.
Room-and-object aware knowledge reasoning for remote embodied referring
expression. In CVPR.

[17] Chen Gao, Si Liu, Jinyu Chen, Luting Wang, Qi Wu, Bo Li, and Qi Tian. 2023.
Room-object entity prompting and reasoning for embodied referring expression.
IEEE TPAMI (2023).

[18] Yunpeng Gao, Chenhui Li, Zhongrui You, Junli Liu, Zhen Li, Pengan Chen, Qizhi
Chen, Zhonghan Tang, Liansheng Wang, Penghui Yang, et al. 2025. OpenFly:
A Versatile Toolchain and Large-scale Benchmark for Aerial Vision-Language
Navigation. arXiv preprint arXiv:2502.18041 (2025).

[19] Yunpeng Gao, Zhigang Wang, Linglin Jing, Dong Wang, Xuelong Li, and Bin
Zhao. 2024. Aerial Vision-and-Language Navigation via Semantic-Topo-Metric
Representation Guided LLM Reasoning. arXiv preprint arXiv:2410.08500 (2024).

[20] Alessandro Giusti, Jérôme Guzzi, Dan C Cireşan, Fang-Lin He, Juan P Rodríguez,
Flavio Fontana, Matthias Faessler, Christian Forster, Jürgen Schmidhuber, Gianni
Di Caro, et al. 2015. A machine learning approach to visual perception of forest
trails for mobile robots. IEEE RAL (2015).

[21] Zonghao Guo, Ruyi Xu, Yuan Yao, Junbo Cui, Zanlin Ni, Chunjiang Ge, Tat-Seng
Chua, Zhiyuan Liu, and Gao Huang. 2025. Llava-uhd: an lmm perceiving any
aspect ratio and high-resolution images. In ECCV.

[22] Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968. A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics 4, 2 (1968), 100–107.

[23] Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng,
Jinlin Wang, Ceyao Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al.
2024. MetaGPT: Meta Programming for A Multi-Agent Collaborative Framework.
In ICLR.

[24] Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-Opazo, and Stephen Gould.
2021. A recurrent vision-and-language bert for navigation. In CVPR.

[25] Vihan Jain, Gabriel Magalhaes, Alexander Ku, Ashish Vaswani, Eugene Ie, and
Jason Baldridge. 2019. Stay on the path: Instruction fidelity in vision-and-language
navigation. arXiv preprint (2019).

[26] Katie Kang, Suneel Belkhale, Gregory Kahn, Pieter Abbeel, and Sergey Levine.
2019. Generalization through simulation: Integrating simulated and real data into
deep reinforcement learning for vision-based autonomous flight. arXiv preprint
(2019).

[27] Xianghao Kong, Jinyu Chen, Wenguan Wang, Hang Su, Xiaolin Hu, Yi Yang,
and Si Liu. 2024. Controllable navigation instruction generation with chain of
thought prompting. In European Conference on Computer Vision. Springer, 37–54.

[28] Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra, and Stefan Lee.
2020. Beyond the nav-graph: Vision-and-language navigation in continuous
environments. In ECCV.

[29] Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. 2020.
Room-Across-Room: Multilingual Vision-and-Language Navigation with Dense
Spatiotemporal Grounding. In EMNLP.

[30] Jungdae Lee, Taiki Miyanishi, Shuhei Kurita, Koya Sakamoto, Daichi Azuma,
Yutaka Matsuo, and Nakamasa Inoue. 2024. CityNav: Language-Goal Aerial
Navigation Dataset with Geographic Information. arXiv preprint (2024).

[31] Hongyu Li, Jinyu Chen, Ziyu Wei, Shaofei Huang, Tianrui Hui, Jialin Gao, Xiaom-
ing Wei, and Si Liu. 2025. LLaVA-ST: A Multimodal Large Language Model for
Fine-Grained Spatial-Temporal Understanding. arXiv preprint arXiv:2501.08282
(2025).

[32] Jialu Li and Mohit Bansal. 2024. Panogen: Text-conditioned panoramic envi-
ronment generation for vision-and-language navigation. Advances in Neural
Information Processing Systems 36 (2024).

[33] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan
Li, Jianwei Yang, Hang Su, Jun Zhu, et al. 2023. Grounding dino: Marrying
dino with grounded pre-training for open-set object detection. arXiv preprint
arXiv:2303.05499 (2023).

[34] Shubo Liu, Hongsheng Zhang, Yuankai Qi, Peng Wang, Yanning Zhang, and Qi
Wu. 2023. Aerialvln: Vision-and-language navigation for uavs. In ICCV.

[35] Youzhi Liu, Fanglong Yao, Yuanchang Yue, Guangluan Xu, Xian Sun, and Kun
Fu. 2024. NavAgent: Multi-scale Urban Street View Fusion For UAV Embodied
Vision-and-Language Navigation. arXiv preprint (2024).

[36] Antonio Loquercio, Ana I Maqueda, Carlos R Del-Blanco, and Davide Scaramuzza.
2018. Dronet: Learning to fly by driving. IEEE RAL 3, 2 (2018), 1088–1095.

[37] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[38] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive
environments. NeurIPS (2017).

[39] András L Majdik, Charles Till, and Davide Scaramuzza. 2017. The Zurich urban
micro aerial vehicle dataset. The IJRR (2017).

[40] ViktorMakoviychuk, LukaszWawrzyniak, YunrongGuo,Michelle Lu, Kier Storey,
Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al.
2021. Isaac gym: High performance gpu-based physics simulation for robot
learning. arXiv preprint arXiv:2108.10470 (2021).

[41] Yash Vardhan Pant, Houssam Abbas, Rhudii A Quaye, and Rahul Mangharam.
2018. Fly-by-logic: Control of multi-drone fleets with temporal logic objectives.
In ICCPS. IEEE, 186–197.

[42] Diego Perez-Liebana, Katja Hofmann, Sharada Prasanna Mohanty, Noburu Kuno,
Andre Kramer, Sam Devlin, Raluca D Gaina, and Daniel Ionita. 2019. The multi-
agent reinforcement learning in malm\" o (marl\" o) competition. arXiv preprint
arXiv:1901.08129 (2019).

[43] Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang, William Yang Wang, Chunhua
Shen, andAnton van denHengel. 2020. Reverie: Remote embodied visual referring
expression in real indoor environments. In CVPR.

[44] Yanyuan Qiao, Qianyi Liu, Jiajun Liu, Jing Liu, and Qi Wu. 2024. LLM as Copilot
for Coarse-Grained Vision-and-Language Navigation. In European Conference on
Computer Vision. Springer, 459–476.

[45] Shuhuai Ren, Linli Yao, Shicheng Li, Xu Sun, and Lu Hou. 2024. Timechat: A
time-sensitive multimodal large language model for long video understanding. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
14313–14323.

[46] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Far-
quhar, Nantas Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob
Foerster, and Shimon Whiteson. 2019. The starcraft multi-agent challenge. arXiv
(2019).

[47] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[48] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. 2018. Airsim:
High-fidelity visual and physical simulation for autonomous vehicles. In Field and
Service Robotics: Results of the 11th International Conference. Springer, 621–635.



MM ’25, October 27–31, 2025, Dublin, Ireland Ruipu Wu et al.

[49] Abhik Singla, Sindhu Padakandla, and Shalabh Bhatnagar. 2019. Memory-based
deep reinforcement learning for obstacle avoidance in UAV with limited environ-
ment knowledge. IEEE TIST (2019).

[50] Nikolai Smolyanskiy, Alexey Kamenev, Jeffrey Smith, and Stan Birchfield. 2017.
Toward low-flying autonomous MAV trail navigation using deep neural networks
for environmental awareness. In IROS.

[51] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[52] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin
Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du,
Xuancheng Ren, Rui Men, Dayiheng Liu, Chang Zhou, Jingren Zhou, and Junyang
Lin. 2024. Qwen2-VL: Enhancing Vision-Language Model’s Perception of the
World at Any Resolution. arXiv preprint arXiv:2409.12191 (2024).

[53] Su Wang, Ceslee Montgomery, Jordi Orbay, Vighnesh Birodkar, Aleksandra
Faust, Izzeddin Gur, Natasha Jaques, Austin Waters, Jason Baldridge, and Peter
Anderson. 2022. Less is more: Generating grounded navigation instructions from
landmarks. In CVPR.

[54] Xiangyu Wang, Donglin Yang, Ziqin Wang, Hohin Kwan, Jinyu Chen, Wenjun
Wu, Hongsheng Li, Yue Liao, and Si Liu. 2024. Towards Realistic UAV Vision-
Language Navigation: Platform, Benchmark, and Methodology.

[55] Zhefan Xu, Xinming Han, Haoyu Shen, Hanyu Jin, and Kenji Shimada. 2025.
Navrl: Learning safe flight in dynamic environments. IEEE RAL (2025).

[56] Yutaro Yamada, Yihan Bao, Andrew K Lampinen, Jungo Kasai, and Ilker Yildirim.
2023. Evaluating spatial understanding of large language models. arXiv preprint
arXiv:2310.14540 (2023).

[57] Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and
Hengshuang Zhao. 2024. Depth anything v2. NeurIPS 37 (2024), 21875–21911.

[58] Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg.
2016. Modeling context in referring expressions. In ECCV. Springer, 69–85.

[59] Haitian Zeng, Xiaohan Wang, WenguanWang, and Yi Yang. 2023. Kefa: A Knowl-
edge Enhanced and Fine-grained Aligned Speaker for Navigation Instruction
Generation. arXiv preprint arXiv:2307.13368 (2023).

[60] Jiazhao Zhang, KunyuWang, Rongtao Xu, Gengze Zhou, Yicong Hong, Xiaomeng
Fang, Qi Wu, Zhizheng Zhang, and HeWang. 2024. Navid: Video-based vlm plans
the next step for vision-and-language navigation. arXiv preprint arXiv:2402.15852
(2024).

[61] Yue Zhang and Parisa Kordjamshidi. 2023. VLN-Trans, Translator for the Vision
and Language Navigation Agent. In ACL.

[62] Yusheng Zhao, Jinyu Chen, Chen Gao, Wenguan Wang, Lirong Yang, Haibing
Ren, Huaxia Xia, and Si Liu. 2022. Target-Driven Structured Transformer Planner
for Vision-Language Navigation. In ACM MM.

[63] Zhonghan Zhao, Kewei Chen, Dongxu Guo, Wenhao Chai, Tian Ye, Yanting
Zhang, and Gaoang Wang. 2024. Hierarchical auto-organizing system for open-
ended multi-agent navigation. arXiv (2024).

[64] Duo Zheng, Shijia Huang, Lin Zhao, Yiwu Zhong, and Liwei Wang. 2024. To-
wards learning a generalist model for embodied navigation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 13624–13634.

[65] Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong,
Bo Zhang, Tiejun Huang, and Zheng Liu. 2024. MLVU: A Comprehensive Bench-
mark for Multi-Task Long Video Understanding. arXiv preprint arXiv:2406.04264
(2024).

[66] Fengda Zhu, Vincent CS Lee, and Rui Liu. 2024. Communicative and Coopera-
tive Learning for Multi-agent Indoor Navigation. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Springer, 273–285.


	Abstract
	1 Introduction
	2 Related Works
	2.1 Ground-based Vision-Language Navigation
	2.2 UAV Navigation
	2.3 Multi Agent Navigation

	3 Dual-Altitude UAV Collaborative Vision–Language Navigation
	3.1 Task Formulation
	3.2 HaL-13k Dataset

	4 AeroDuo: Aerial Duo for UAV-based VLN
	4.1 Overview of AeroDuo
	4.2 Pilot-LLM on High UAV
	4.3 Multi-Stage Pathfinder on Low UAV
	4.4 Training Process of Pilot-LLM

	5 Experiments
	5.1 Experiment Setup
	5.2 Main Comparisons
	5.3 Ablation Study
	5.4 Qualitative Analysis

	6 Conclusion
	References

