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Abstract

Multi-UAV collaborative 3D object detection can perceive and comprehend com-
plex environments by integrating complementary information, with applications
encompassing traffic monitoring, delivery services and agricultural management.
However, the extremely broad observations in aerial remote sensing and significant
perspective differences across multiple UAVs make it challenging to achieve pre-
cise and consistent feature mapping from 2D images to 3D space in multi-UAV
collaborative 3D object detection paradigm. To address the problem, we propose an
unparalleled camera-based multi-UAV collaborative 3D object detection paradigm
called UCDNet. Specifically, the depth information from the UAVs to the ground
is explicitly utilized as a strong prior to provide a reference for more accurate
and generalizable feature mapping. Additionally, we design a homologous points
geometric consistency loss as an auxiliary self-supervision, which directly influ-
ences the feature mapping module, thereby strengthening the global consistency of
multi-view perception. Experiments on AeroCollab3D and CoPerception-UAVs
datasets show our method increases 4.7% and 10% mAP respectively compared to
the baseline, which demonstrates the superiority of UCDNet.

1 Introduction

Multi-UAV collaborative 3D object detection [1; 2; 3] can perceive and understand complex environ-
ments by employing cooperative strategies and integrating complementary information as shown in
Fig. 1, which has experienced significant advancements in recent years. Compared to single-UAV,
multi-UAV collaborative 3D object detection broadens the observation scope and improves the ro-
bustness to occlusions, whose applications encompass traffic monitoring [4], delivery services [5],
agricultural management [6], and aerial photography [7].

Current multi-UAV collaborative perception methods [8; 9] adopt a multi-stage technological ap-
proach. Specifically, it begins with 2D object detection in each view, followed by cross-image object
association, and finally encompasses collaborative 3D localization of the identified objects. The
multi-stage method could bring about the high complexity of systems and the propensity for error
accumulation. In contrast, the Bird’s Eye View (BEV) method [10] is a novel end-to-end paradigm
for collaborative perception in autonomous driving scenarios, where image features from different
UAVs are initially extracted, then mapped to a unified 3D coordinate system. After feature fusion,
BEV features are obtained which are subsequently used for 3D object detection. This end-to-end
approach directly optimizes the entire model, facilitating the learning of global information and
enhancing the accuracy of 3D object detection.
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Figure 1: The illustration of multi-UAV collaborative 3D object detection.

Nevertheless, the BEV approach cannot be effectively applied to the UAV remote sensing scenarios
due to the difficulty in achieving precise and consistent feature mapping, which is essential for
multi-UAV collaborative 3D object detection. Firstly, BEV-based methods map 2D image features to
3D space by predicting pixel-wise categorical mapping probability distribution, which determines the
weighted pixel feature at each categorical bin along the perspective ray. In aerial contexts, the high
flight altitude of UAVs leads to an extremely broad observation range. The usual response strategy is
increasing mapping categories, which actually complicate the attainment of accurate probabilities
for each categorical mapping bin, thereby severely impacting the perception tasks in the BEV space.
Secondly, unlike different sensors observing without significant overlapping ranges in original BEV
perception, multi-UAV collaborative 3D object detection requires multiple UAVs to observe the same
scene, with significant overlap between different perspectives. Substantial perspective variations
lead to inadequate generalization capabilities of the feature mapping module for each perspective.
During collaboration process, information from distinct UAVs encounters difficulties in constructing
a consistent 3D spatial representation. The superimposition of erroneous mapping features onto
accurate mapping features distorts BEV representations.

To address the challenges in achieving precise and consistent feature mapping, we utilize the UAV
aerial perspective prior to narrow the feature mapping probability distribution and leverage the
UAV collaborative observation characteristic to jointly learn feature mapping relationships across
multiple views. Specifically, this paper presents a innovative multi-UAV Collaborative 3D Object
Detection Network called UCDNet, consisting of a Ground-Prior-Guided Feature Mapping (GFM)
module and a Homologous Point Geometric Consistency Loss (HPL). Firstly, considering objects
in the scene are located on the ground, the GFM module first calculates the ground depth for each
feature pixel based on ground altitude and camera parameters, then sets a narrow possible range
of the feature mapping position near the ground, and finally utilizes a neural network to estimate
the probability distribution for the feature mapping classification task. GFM explicitly make use
of the ground as a strong prior to provide the reference for more accurate and generalizable feature
mapping, which is a simple and effective way. Secondly, motivated by the fact that scenes captured
by different UAVs have certain overlapping areas, the HPL begins with extracting homologous points
on multi-view images, then calculates their positions in 3D space based on the feature mapping
probability distribution, and finally uses the consistency of the 3D spatial positions of the homologous
points as an auxiliary self-supervised signal. HPL directly utilizes the relationship between different
views and their underlying scene geometry to enforce the learning of a unified and precise 3D space.
Independent feature mappings from different UAVs have achieved better results through collaborative
learning. Thirdly, we design a dataset rich in scenarios called "AeroCollab3D" simulated by CARLA
[11] to validate the effectiveness of the proposed UCDNet.

The main contributions of this paper are summarized as follows:

• This paper innovatively propose UCDNet, which is a end-to-end method to enhance multi-UAV
collaborative 3D object detection by precise and consistent feature mapping.

• We design a Ground-Prior-Guided Feature Mapping module which explicitly make use of ground
as a strong prior to provide the reference for more accurate and generalizable feature mapping.
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• We present a Homologous Points Geometric Consistency loss as an auxiliary self-supervised signal,
which directly influences the feature mapping module, strengthening the global consistency of
multi-view feature mapping.

• A simulated dataset, “AeroCollab3D”, designed for multi-UAV collaborative 3D object detection,
is introduced to validate the effectiveness of the proposed UCDNet.

2 Related Works

Multi-UAV Collaborative Perception. With the development of communication and remote sensing
technology [12; 13], multi-UAV collaborative perception has already become a burgeoning field. The
traditional methods generally adopt a multi-stage framework, consisting of detection, association
and localization. After conducting the detection and association of the object across multiple UAVs,
Xu et.al [8] establish system of equations between the object point and pixels on different images
according to the perspective projection imaging principle, and calculate the optimal solution by
least squares method. Men et.al [9] produces multiple localization results for the same object from
different views, from which a optimal solution is selected. However, for multi-stage approach, errors
generated at each step can impact the final outcome, and the long processing duration is not conducive
to real-time UAV perception. In contrast, multi-UAV collaborative perception based on BEV method
is an innovative end-to-end collaborative perception framework. Hu et.al [14] and Chen et.al [3]
respectively explore UAV monocular and collaborative 3D object detection through the construction
of a virtual dataset. These methods perform poorly because they are not specifically improved for
UAV remote sensing scenarios. More methods for UAV perception are worth further explorations.

Multi-View 3D Object Detection. Multi-view 3D object detection is a task of predicting 3D
bounding boxes in the global system from multiple images , which includes object’s center coordinate,
3D dimensions and yaw angle. Current approaches could be mainly categorized into two branches,
LSS-based [10; 15; 16; 17; 18] and query-based [19; 20; 21; 22; 23; 24] methods. LSS-based
methods utilize a mapping probability distribution to model mapping uncertainty and project multi-
view features into the same BEV space. CaDDN [25] and BEVDet [15] propose a fully differentiable
end-to-end network which treats feature mapping as a classification task rather than a regression
task to predict possibilities at each point along the perspective ray in 3D space. BEVDet4D [16]
extends the BEVDet by the temporal modeling and achieves good velocity estimation. BEVDepth
[17] utilizes LiDAR point clouds to supervise feature mapping, but point clouds in UAV scene are
often too sparse to provide effective information. A drawback of the LSS-based approach is that as the
observation range expands, the number of feature mapping categories increases, leading to insufficient
classification capability of the model. Query-based methods utilize attention mechanisms to actively
query 2D features from 3D space. DETR3D [19] samples 2D features from the projected 3D reference
points and then conducts local cross attention to update the queries. BEVFormer [21] exploits spatial
and temporal information through predefined grid-shaped BEV queries. Far3D [22] constructs 3D
queries through the employment of a 2D object detector and a depth network, significantly expanding
the range of 3D object detection. When the perceptual range becomes extensive, query-based methods
struggle with handling occlusions and overlaps, leading to poor performance.

3 Methodology

3.1 Problem Formulation

In this paper, we develop a Multi-UAV collaborative 3D Object Detection Network called UCDNet.
Consider N UAVs in the scene, where the N-th UAV is the ego UAV, let Xi ∈ R3×H×W denote
the image observation captured by the i-th UAV and Xe denote the image from the ego UAV. Y
represents the corresponding ground-truth supervision. The objective of UCDNet is to maximize the
camera-based 3D detection performance :

argmax
θ

ξ
(
Φθ

(
Xe, {Fi→e,Pi→e}N−1

i=1

)
,Y

)
, (1)

where ξ(·, ·) denotes the perception evaluation metric, Φ(·) denotes the multi-UAV collaborative
perception network parameterized by θ and . Fi→e ∈ Rc×h×w and Pi→e ∈ Rd×h×w is the feature
and probability message transmitted from the i-th agent to the ego agent.
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Figure 2: The overall framework of UCDNet, where Ground-Prior-Guided Feature Mapping explic-
itly utilize ground as a strong prior to provide the reference for more accurate and generalizable
feature mapping and Homologous Point Geometric Consistency Loss is proposed as a auxiliary
self-supervision, which directly influences the feature mapping network, strengthening the global
consistency of multi-view perception.

3.2 Overview

The overall framework of our proposed multi-UAV collaborative 3D object detection model is
illustrated in Fig. 2, consisting of four steps: image encoder, feature mapping, feature fusion and
3D detection head. In image encoder, the framework initially extracts the image feature Fi and its
mapping probability distribution Pi through the backbone for each UAV, whose weights are shared
across multiple agents, followed by the subordinate UAVs transmitting messages to the ego UAV. In
feature mapping, the mapping probability distribution is utilized to guide the pixel features from N
UAVs backproject into each spatial position along the perspective ray in a unified world coordinate
system. Then, feature fusion subsequently acquires the fused BEV feature by a collapse and FPN
module. Finally, a task-specific head is built upon the BEV feature and perform 3D object detection.

3.3 Ground-Prior-Guided Feature Mapping

Figure 3: UAV perspective diagram.

The precise mapping of pixel features from the image
domain to the spatial domain is crucial for achieving multi-
UAV collaborative 3D object detection. BEV methods
utilize the probability distribution of pixel depth Pu,v

A to
guide the weighted pixel feature Fu,v in mapping at each
point along the perspective ray. The expansive observation
range of UAVs makes it difficult to map pixel features to
their correct 3D positions with the maximum probability.
To improve the accuracy of feature mapping, we propose
GFM module, which introduces the ground depth as a
strong prior to provide the reference for feature mapping,
with its methodology illustrated in Fig. 4

Definitions. As illustrated in Fig. 3, Oc −XcYcZc and Ow −XwYwZw are the camera coordinate
system and world coordinate system. Within the camera imaging model, a ray emanates from the
camera center Oc towards a pixel P = (u, v), intersecting with an object in 3D space at point A, and
further extending to intersect with the ground at point B. In our definition, the length of OcA along
Zc is the pixel depth lA, collectively forming the image depth D. The length of OcB along Zc is the
ground depth prior lB , and the length of BA along Zc is the depth from the ground to the pixel lAB .

Ground Depth Calculation. The intrinsic parameters of the camera are denoted by K ∈ R3×3,
while R ∈ R3×3 and T ∈ R3×1 respectively represent the rotation and translation matrices of the
extrinsic parameters, which are known from the dataset. Then the ground depth prior lB can be
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Figure 4: Schematic of the GFM module’s operational flow.
Figure 5: Histogram of pixel depth
and depth from ground to pixel.

calculated as follows and detailed derivation can be found in the supplementary material.

lB =
zw − [R−1(−T)]3

[R−1K−1]31u+ [R−1K−1]32v + [R−1K−1]33
. (2)

Depth Estimation Guided by Ground Depth Prior. UAVs possess a unique aerial perspective,
which results in a distinctly narrower distribution range for lBA compared to lA, as illustrated in Fig.
5. Based on the ground depth prior lB , our method firstly estimates the probability distribution of
lBA represented by Pu,v

BA using a simple network Ψ(·).

Pu,v
BA = Ψ(Fu,v) = {P (kd)}Mk=1 , (3)

where lBA is divided into M depth bins, each with a length of d. Then the probability distribution of
lA represented by Pu,v

A can be calculated by the conversion formula as follows:

Pu,v
A = {P (lB − kd)}Mk=1 . (4)

Feature Mapping Process. Finally, the pixel feature Fu,v is mapped into the camera coordinate
system according to the probability distribution Pu,v

A by outer product ⊗, and transformed into a
unified world coordinate system represented by Tw

c .

Tw
c (Fu,v ⊗ Pu,v

A ) . (5)

Ground-prior-guided feature mapping is an economical and effective method to enhance the feature
mapping accuracy by reducing the mapping range. We directly and explicitly take advantage of
ground depth as a precise reference and strong prior to improve the robustness of feature mapping
from the UAV perspective. The mapping positions become more reasonable when it is constrained
near the real ground.

3.4 Homologous Point Geometric Consistency Loss

In multi-UAV collaborative 3D object detection task, there are numerous overlapping observation
areas among different UAVs, the image features Fi from which are mapped into a unified 3D space.
If the feature mapping from a certain perspective is inaccurate, it will affect the feature fusion and
reduce the accuracy of 3D object detection. Therefore, enhancing the consistency of multi-view
feature mapping is particularly crucial. In this paper, we design an innovative homologous point
geometric consistency loss, where independently feature mappings from different UAVs supervise
each other, collaboratively learning a consistent mapping relationship.

Homologous points [26] denote the pixels in different images, which represent the same physical
point, as illustrated in Fig. 7. Homologous points posses geometric consistency because they can
backproject to the same 3D position in the world coordinate system. Given the overlapping areas
captured by each UAV, we can extract homologous points from multi-view image features, utilizing
the geometric consistency loss of these points as an auxiliary supervisory signal to get more consistent
feature mapping. Considering the background area lacks supervisory signals, which leads to the
inherently impossibility of accurate feature mapping, we only extract homologous points from object
regions to fully leverage the potential of homologous point supervision. The detailed steps HPL are
as follows and inllustrated in Fig. 6.
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Figure 6: Schematic of the HPL’s operational flow.
Figure 7: Homologous point geo-
metric consistency.

Assuming that given a feature image pair (Fi,Fj), we aims to obtain pairs of Homologous pixels
P ∈ Fi and Q ∈ Fi. Firstly, We use a simple network to obtain a predicted object area mask. This
predicted mask is then used to constrain the extraction range of the homologous points. Secondly, we
compute cross-attention between two feature images to acquire the correlation between any two points.
Thirdly, we set both a numerical threshold and a correlation threshold, and only those homologous
points that satisfy both thresholds are retained. The formula of our proposed loss function are as
follows:

Lconsistency =
1

N

N∑
k=1

∥P̃ (k) − Q̃(k)∥22. (6)

We use the Euclidean distance between the 3D positions P̃ , Q̃ of homologous points P , Q as the loss
function. The transformation between homologous points and their corresponding 3D positions is as
follows:

P̃ = R−1
P (K−1

P P̄ zP −TP ) Q̃ = R−1
Q (K−1

Q Q̄zQ −TQ), (7)

where P̄ , Q̄ denote the homogeneous form of P , Q and zP , zQ are the weighted pixel depth of P,Q.
Our homologous points geometric consistency loss explicitly exploits the relationship between differ-
ent images and their underlying scene geometry, enforcing the learning of a global and geometrically
precise solution, thereby enhancing the model’s understanding of the 3D scene and improving object
detection effect without exploiting extra computational cost during inference. Moreover, our ho-
mologous points geometric consistency loss directly affects the feature mapping network and image
features rather than downstream BEV features, enhancing the accuracy of 3D object detection while
accelerating model convergence.

3.5 AeroCollab3D Dataset

To better implement multi-UAV collaborative 3D object detection, we design a large-scale UAV-based
collaborative perception dataset called AeroCollab3D, simulated by CARLA [11], including 8 maps,
3.2K samples, 19.2K UAV images and 218K 3D boxes across 4 categories. We set 6 collaborative
UAVs flying at the height of 50m, each of which equips with only 1 camera at a pitch degree of -45◦
to simulate the real situation. The image resolution is 1600 × 900, and the detection range is 110m
× 110m. The sample data is collected randomly at 2 Hz. The dataset employs the same evaluation
metrics as the nuScenes dataset. Tab. 1 compares AeroCollab3D with the existing multi-UAV 3D
object detection dataset CoPerception-UAVs. The proposed AeroCollab3D has more object categories,
larger image resolutions, higher capture frequency which is beneficial for temporal perception, and
richer scenarios with high-rise buildings and roadside trees leading to observation occlusions, shown
in Fig. 8. More details about AeroCollab3D can be found in the supplemental material.
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Figure 8: Challenging scenes in
AeroCollab3D dataset.

Table 1: Comparison of CoPerception-UAVs and AeroCollab3D.

Attribute CoPerception-UAVs AeroCollab3D
Number of Maps 3 8
Number of Agents 5 6
Number of Sensors 5 1
Flight Height 60m 50m
Object Categories 1 4
Capture Frequency 0.25Hz 2Hz
Number of Samples 5276 3200
Image Resolution 800 × 450 1600 × 900

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate our approach on CoPerception-UAVs [3] and AeroCollab3D dataset. CoPerception-UAVs
is a multi-UAV collaborative perception dataset co-simulated by AirSim [27] and Carla, including 3
map, 1 category of object and 5 UAVs, each equipped with 5 cameras. The input image size is 800 ×
450 and the perception range is 200m × 350m. AeroCollab3D is our proposed dataset mentioned in
Sec.3.

The 3D object objection evaluation metrics are mean Average Precision (mAP), mean Absolute
Trajectory Error (mATE), mean Absolute Scale Error (mASE), and mean Absolute Orientation
Error (mAOE), where 0.5, 1.0, 2.0, 4.0 are used as the threshold of object center distance to judge
true positives. To quantitatively evaluate the impact of UCDNet on feature mapping, we design an
evaluation metric mean Feature Mapping Score (mFMS). Centering on the object GT position, a
cubic region of 4 × 4 × 4 is defined. The probability values of all features projected within this
region are summed for FMS and each object scores sre averaged to obtain the mFMS. A higher result
indicates a greater probability that the object features are correctly mapped to the intended position.

4.2 Implementation Details

In our experimental setup, we select BEVDet4D [16] as our baseline and CenterPoint [28] is served
as the 3D object detection head. Our method is trained by AdamW optimizer [29] with a learning
rate of 2 ×10−4 . The models undergo 40 epochs of training with a batch size of 8. Only key frames
are used during both training and inference. All experiments are conducted on an RTX-3090 GPU
with PyTorch version 1.8.3.

4.3 Main Results

Results on AeroCollab3D dateset. We compare the proposed UCDNet with previous state-of-the-
art vision-based 3D detectors on the AeroCollab3D test set. As shown in Tab. 2, UCDNet shows
superior performance on mAP, mATE, mASE, and mAOE metrics when adopting ResNet50 backbone
with nuImages pretraining. Compared with the baseline BEVDet4D, UCDNet has considerable
improvements of 4.7% mAP. The mATE of UCDNet is 4.2% better than BEVDet4D, indicating that
our method is able to improve the accuracy of localization. Compared to mainstream methods that
enhance detection results through the use of multiple frames, such as HOP [2] and StreamPETR
[23], UCDNet employs the baseline setting of utilizing only two frames but surpasses the former
in detection outcomes. In contrast to the BEVdepth method, which employs point cloud data as
a supervisory signal, our approach, utilizing solely optical images, achieves superior results. This
demonstrates that the method proposed in this study effectively enhances the accuracy of depth
estimation to improve detection performance.

Results on CoPerception-UAVs dataset. In our implementation, we exclusively deploy three UAVs
for collaboration perception, as our observations indicate that the remaining two UAVs do not share
any overlapping fields of view with the ego agent, thus offering no enhancement to the perception
outcomes of the main drone. We compare our UCDNet with other state-of-the-art methods like
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Where2comm, BEVDet on CoPerception-UAVs test set. As shown in Tab. 2, our proposed method
is improved by 10% mAP on CoPerception-UAVs compared with baseline, with an obvious effect.
The UAV flight altitude of CoPerception-UAVs is 60m, which is greater than the AeroCollab3D
data set, so our method is more obvious than baseline, which proves the significant advantage of our
method in UAV 3D object detection. To ensure a fair comparison with the where2comm methodology,
we merely integrated its collaboration strategy into our baseline, while the backbone network and
detection head remained unchanged. Experimental outcomes demonstrate that UCDNet significantly
outperforms where2comm in terms of detection results.

Table 2: Comparing with the state-of-the-art on AeroCollab3D and CoPerception-UAVs test set. ⋆

denotes our baseline model, whereas † indicates that we integrates the collaboration module proposed
by Where2comm into the baseline as the comparative method. − represents CoPerception-UAVs
dataset cannot be applied to StreamPETR and HoP due to the lack of point cloud information.

Method AeroCollab3D CoPerception-UAVs
mAP↑ mATE↓ mASE↓ mAOE↓ mAP↑ mATE↓ mASE↓ mAOE↓

BEVDet [15] 0.584 0.478 0.141 0.453 0.334 1.010 0.169 1.574
BEVDet4D⋆ [16] 0.592 0.459 0.119 0.363 0.347 0.992 0.170 1.099
BEVLongTerm [16] 0.356 0.585 0.244 0.583 0.255 1.023 0.201 1.823
Where2comm† [3] 0.402 0.498 0.201 0.462 0.298 0.997 0.178 1.084
StreamPETR [23] 0.456 0.631 0.122 0.458 0.312 1.002 0.185 1.694
HoP [2] 0.180 0.812 0.248 1.066 − − − −
BEVDepth [17] 0.601 0.438 0.153 0.451 − − − −
UCDNet 0.639 0.417 0.112 0.388 0.434 0.853 0.164 1.039

Visualization Results. Fig. 9 shows the visualization results of our method on AeroCollab3D
dataset. UCDNet’s detection bounding boxes offer better fitting to the objects and are capable of
collaboratively detecting small and occluded objects, demonstrating both accuracy and robustness.

Figure 9: Visualization Results of AeroCollab3D dataset.

4.4 Ablation Study & Analysis

Modules Analysis within the multi-UAV collaborative Perception Framework: As described
in the Sec.3, the proposed framework contains two key components: GFM and HPL. We conduct
a series of ablation experiments on the AeroCollab3D dataset to analyze the contribution of each
module and the experimental results are depicted in Tab. 3. After utilizing GFM module, our
method significantly enhances 3.6% mAP and decreases 5.8% mATE compared to baseline, which
demonstrates the reliability and suitability of GFM module in multi-UAV collaborative 3D object
detection. Additionally, adding HPL to the baseline during training period gain the increase of 2.2%
mAP, which is a effective and economical way to enhance the accuracy in multi-UAV collaborative 3D
object detection. Furthermore, it is noteworthy that our method performs better on stricter evaluation
metrics. For instance, after adding both the GFM and HPL modules, our method gains a 2.7%
improvement in AP4.0 but a 10.0% improvement in AP0.5.

Discussion on Feature Mapping. As depicted in Tab. 3,UCDNet improves 2.273 mFMS compared
to the baseline. Fig. 10(b) uses object FMS as the radius to draw a circle, which can intuitively
reflect the improvement of UCDNet on feature mapping. Fig. 10(c) uses colors to represent the sum
of probabilities obtained at each location on the BEV feature, where object area is more obvious.
Through the discussion above, the proposed UCDNet can achieve more reliable feature mapping to
enhance multi-UAV collaborative 3D object detection.
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Table 3: Ablation experiments results.
Module Metrics

GFM HPL mAP↑ AP0.5↑ AP1.0↑ AP2.0↑ AP4.0↑ mATE↓ mASE↓ mAOE↓ mFMS↑
✗ ✗ 0.592 0.264 0.525 0.732 0.767 0.459 0.119 0.363 3.916
✓ ✗ 0.628 0.359 0.627 0.749 0.779 0.401 0.125 0.407 5.763
✗ ✓ 0.614 0.331 0.615 0.738 0.773 0.411 0.115 0.404 4.623
✓ ✓ 0.639 0.353 0.642 0.766 0.794 0.417 0.112 0.388 6.189

Figure 10: Visualization results about feature mapping.

Depth from the Ground to the Pixel Range in GFM Module. In GFM module, we set lBA range
for categorical depth estimation task. Fig. 11 depicts the variation of detection performance in
response to different lBA range settings. lBA = 0 means we directly use lB as lA without depth
estimation, which gains moderate improvement compared to baseline. But if we want to acquire
more accurate detection, we should consider object’s scale and camera view to design a suitable lBA

range. A too large lBA range will increase the difficulty of the classification task, leading to a decline
in detection results.

Homologous Point Pair Number in HPL Module. The number of homologous point pairs involved
in HPL determines the supervisory effectiveness. Smaller numbers cannot provide enough supervision
to make multi-view learn consistent mapping relationships, while larger numbers may introduce
incorrect Homologous Points which misleads the model’s convergence. After investigating the effects
of various homologous point pair numbers, as shown in Fig. 12, we select 200 homologous point
pairs per batch in HPL for optimal performance.

Collaborative UAV Number Analysis. In this experiment, we study the impact of the number
of different collaborative UAV on the perceptual outcomes. As Fig. 13 shows, the accuracy of
collaborative perception improves with the increase of collaborative UAV number, which proves the
rationality multi-UAV collaborative perception.

Figure 11: Detection results of
different depth from the ground
to the pixe range.

Figure 12: Detection results of
different homologous point pair
number.

Figure 13: Detection results
of different collaborative UAV
numbers.

5 Conclusion

In this paper, we propose an unparalleled muti-UAV collaborative 3D object detection network called
UCDNet. To address the feature mapping challenge from multi-UAV collaborative perception, the
ground depth is explicitly utilized as a strong prior to provide the reference for more accurate and
generalizable feature mapping. Besides, we introduce homologous points geometric consistency loss
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as a auxiliary self-supervision, which strengthens the global consistency of multi-view perception.
Additionally, we construct a simulated dataset for multi-UAV collaborative perception task. Experi-
mental results sufficiently demonstrate the superiority of the proposed UCDNet, and ablation studies
confirm the effectiveness of the two proposed modules.

Limitation and Future Work. The current research only utilizes simulated datasets to validate
the algorithm’s effectiveness. In the future, we plan to extend this research to real-world scenarios,
investigating issues such as sensor noise, communication delays, etc.
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A Supplemental Material

A.1 AeroCollab3D Dataset Details

Map creation The simulated scenes, including road layout, architectural facilities, green landscape,
static objects, and traffic flow, are created based on CARLA simulation platform. We take eight
open-source maps (Town 1 to Town 7 and Town 10) as the foundational road layout. The scenarios
are diverse and complex, ranging from open fields to urban landscapes with observation occlu-
sions, as shown in Fig.14, which provides a reliable foundation for verifying the effectiveness and
generalization of multi-UAV collaborative 3D object detection.

Traffic Flow Creation Moving vehicles and people in the scene are controlled via CARLA, with
hundreds of objects spawned in each scene using the official script provided by CARLA. The map’s
road layout determines each object’s original location and motion trajectory.

Sensor Setup We set 6 collaborative UAVs flying at the height of 50m, each of which equips with
only 1 camera at a pitch degree of -45◦ to simulate the real situation. The image resolution is 1600 ×
900, and the BEV detection range is 110m × 110m. We set different world coordinates for each scene
and different ego coordinates for each sample in the same scene. Each camera’s translation (x, y, z)
and rotation (w, x, y, z in quaternion) are recorded in ego coordinates. And transformations from
each ego coordinate to the world coordinate are also annotated.

Data Collection Our proposed dataset is collected by the CARLA simulation platform under the
MIT license. We utilize CARLA to create complex simulation scenes and traffic flow. For each map,
we set 20 scenes by randomly initializing the positions. For each scene, we set 20 samples which
are collected at a frequency of 2 Hz. We synchronously collect images from 6 UAVs, resulting in 6
images per sample. A total of 19.2K images have been collected to support our experiments. Our
ground truth labels for collaborative perception are derived from 3D bounding boxes of observed
targets. Thus, we take advantage of lidar sensors to collect these 3D bounding boxes, which include
location (x, y, z), rotation (represented with quaternion), and dimensions (length, width and height),
amounting to nearly 21.8K 3D bounding boxes. For the same object, we marked its occurrence in
different sample, so that our dataset can be used for multiple tasks such as detection, tracking, and
prediction. Fig.15 shows the annotations of AeroCollab3D dataset.

Data Usage We have randomly split the samples into training and validation sets, yielding 15.36k
images for training and 3.84k for validation. The dataset is structured similarly to the widely used
autonomous driving dataset, nuScenes, so that it can be directly used with the well-established
nuScenes-devkit.

Figure 14: Visualization of Diverse Scenes in AeroCollab3D dataset.

A.2 Ground Depth Prior Derivation in GFM Module

The intrinsic parameters of the camera are denoted by K ∈ R3×3, while R ∈ R3×3 and T ∈ R3×1

respectively represent the rotation and translation matrices of the extrinsic parameters, which are
known from the dataset. Based on the camera model, the transformation between a point B =
(xw, yw, zw) on the ground in the world coordinate system and its projection P = (u, v) in the pixel
coordinate system can be described as:
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Figure 15: Visualization of Annotations in AeroCollab3D dataset.
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We denote R−1K−1 as the matrix M = (mij) ∈ R3×3, and R−1(−T) as the vector N = (ni) ∈
R3×1. Then we get the following formula:
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Then the ground depth prior lB is

lB =
zw − n3

m31u+m32v +m33
=

zw − [R−1(−T)]3
[R−1K−1]31u+ [R−1K−1]32v + [R−1K−1]33

(10)

A.3 More Experiments Content

Implementation Details supplement We follow the setup from the baseline BEVDet4D. Initially, the
raw images, with a resolution of 900 × 1600 pixels in AeroCollab3D and 450 × 900 in CoPerception-
UAVs, are scaled and cropped to a size of 256 × 480. As to view transformation, the lBA estimation
range is configured from 0 to 10 meters, discretized into 10 intervals. Subsequently, for BEV
representations, the spatial ranges for the x, y, and z axes are set to [-51.2, 51.2], [-51.2, 51.2], and
[-5, 3] meters, respectively. We evaluate the model performance across various perceptual scopes: a
102.4 m × 102.4 m area with 0.8 m resolution. Moreover, we choose 200 homologous point pairs per
batch in HPL.

Visualization Results on CoPerception-UAVs Dataset. As depicted in Fig. 16, our method achieves
good detection performance on the CoPerception-UAVs dataset. However, there are missed detections
in the images due to the small object size.

Figure 16: Visualization Results of CoPerception-UAVs dataset.

Visualization Results on Module Ablation. Fig. 17 shows the detection results after adding GFM
and HPL respectively, where the two modules all enhance the 3D object localization.
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Figure 17: Visualization Results on Module Ablation.
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