UAV-VLA: Vision-Language-Action System for Large Scale Aerial Mission Generation

Oleg Sautenkov Skoltech Moscow, Russia oleg.sautenkov@skoltech.ru yasheerah.yaqoot@skoltech.ru artem.lykov@skoltech.ru

Yasheerah Yaqoot Skoltech Moscow, Russia

Artem Lykov Skoltech Moscow, Russia Muhammad Ahsan Mustafa Skoltech Moscow, Russia ahsan.mustafa@skoltech.ru

Grik Tadevosyan Skoltech Moscow, Russia grik.tadevosyan@skoltech.ru aibek.akhmetkazy@skoltech.ru

Aibek Akhmetkazy Moscow, Russia

Miguel Altamirano Cabrera Moscow, Russia

Mikhail Martynov Skoltech Moscow, Russia m.altamirano@skoltech.ru mikhail.martynov@skoltech.ru

Sausar Karaf Skoltech Moscow, Russia sausar.karaf@skoltech.ru

Dzmitry Tsetserukou Skoltech Moscow, Russia d.tsetserukou@skoltech.ru

主讲人:郭周鹏

日期: 2025.9.26

Introduction-背景与挑战

研究背景:

- 无人机(UAV)在农业巡检、城市管理、灾害救援、监控等领域得到广泛应用;
- 随着任务复杂度增加,人机交互需求更高;
- 传统控制方式依赖人工遥控或复杂的任务编程,对非专业用户门槛高;
- 多模态大模型 (LLM/VLM) 的发展, 使得"自然语言 → 行动指令"的新范式成为可能。

核心挑战:

- 自然语言与无人机控制的鸿沟:用户的指令是模糊的自然语言,而无人机执行需要严格的航点与动作命令。
- 跨模态融合难:需要把语言描述和卫星图像等视觉数据对齐,并准确找到目标。
- 泛化能力不足: 现有许多 VLA/VLN 模型依赖大规模配对数据集,难以在开放环境中零样本应用。
- 任务生成效率低:人工任务规划耗时长,不适合应急或大规模任务。

Introduction-挑战与研究目标

现有方法的局限性:

- 手动方式:依赖人工绘制航点,费时费力(论文实验中人工操作30个任务需要35分钟)。
- 传统导航方法: 多集中于"路径规划",但无法表达复杂动作(如"绕圈""拍照""返航")。
- ・ 己有 VLA/VLN 模型:
- 1. 输出多为路径点,而非无人机可直接执行的动作文件。
- 2. 多数基于室内/小规模环境, 缺乏大尺度卫星图场景的任务生成能力;
- 3. 严重依赖标注数据,难以迁移到新任务或新场景;

理想目标:

- 模型能够 零样本、泛化 到全球范围的卫星影像任务;
- 输出应能 直接下发给无人机执行(无需人工二次转换)-VLA。
- 生成任务既要覆盖目标识别、路径生成、动作定义,又要高效、接近人工水平;
- 实现用户能够通过自然语言直接描述任务,系统自动生成完整的无人机飞行任务; (

Introduction-贡献与优势

【模型维度】:

- 提出 UAV-VLA 系统:集成 Vision-Language Model (VLM) + GPT 的任务生成框架。
- ・ 核心模块:
- 1. 目标提取 (Goal Extracting GPT) :解析用户自然语言指令,提取任务目标。
- 2. 目标搜索 (Object Search VLM) : 在卫星图像中定位任务目标。
- 3. 动作生成(Action Generation GPT):将目标点转换为地理坐标,生成 UAV 可执行的动作序列(MAVProxy 任务文件)。

贡献凝练:

- ① 实现在大尺度*卫星图像*场景下 "通过自然语言直接描述任务,系统自动生成完整的无人机飞行任务"。->卫星场景 -和-VLA
- ② UAV-VLA不需要任何样本->零样本挑战->没有对模型做微调,直接拿来用

验证与优势【验证维度】:

- 在**新构建的** UAV-VLPA-nano-30 **基准数据集**(涵盖城市、乡村、交通、水体等多类型大尺度卫星图场景->**多样场景->泛化挑战**)上 验证;
- 实验表明系统生成任务 平均耗时 5 分 24 秒, 比人工快 6.5 倍;
- 生成路径的平均空间误差为 34.22 m, 路径长度仅比人工长 21.6%;

Method-步骤1-GPT

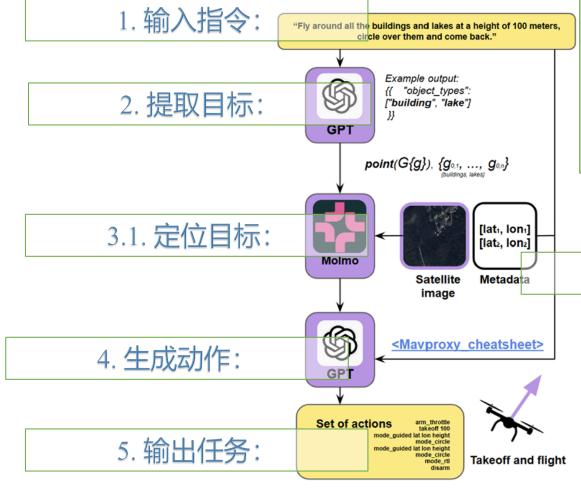


Fig. 1: The pipeline of the UAV-VLA system.

该论文方法总结如下:

1. 输入指令: 用户用自然语言描述飞行任务。

2. 提取目标: GPT理解指令并抓取关键目标。

3.1. 定位目标: 视觉模型在卫星图像中找到目标位置。

3.2. 坐标转换: 把图像坐标映射成真实经纬度。

4. 生成动作: GPT规划无人机具体飞行动作序列。

5. 输出任务: 生成飞行计划文件, 无人机可直接执行。

3.2. 坐标转换:

Method-步骤1-GPT

输入指令,并确定我们 要到达的关键目标

The **goal extracting GPT module** parses I into a set of goals:

$$G = GPT(I) = \{g_1, g_2, \dots, g_n\},$$
 (2)

where G contains goals derived from the instruction, tailored to the task.

```
实例:
输入:
```

{ "raw_text": "从起点 A 起飞, 飞到 B 点, 在 B 点上空沿半径 20 m 绕一圈 (高度 100 m, 拍照) , 然后飞往 C 点并返航。", "meta": { "user_id": "u123", "time": "2025-09-23T19:00:00+08:00" }}

```
输出: ->结构化目标->对接Molmo->符合Molmo输入的数据格式
```

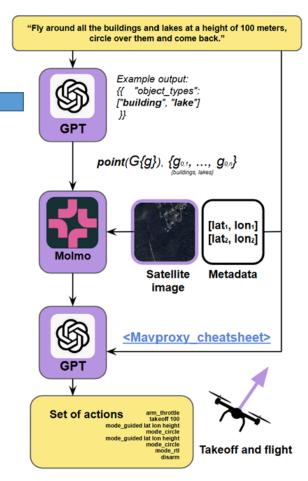
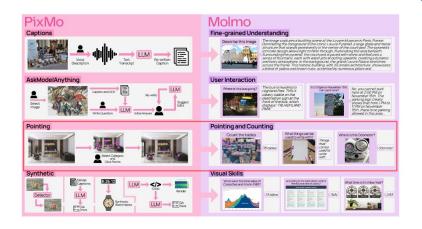
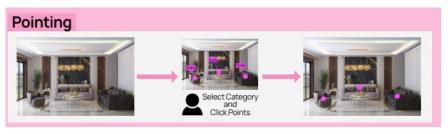


Fig. 1: The pipeline of the UAV-VLA system.

Method-步骤2.1-Molmo





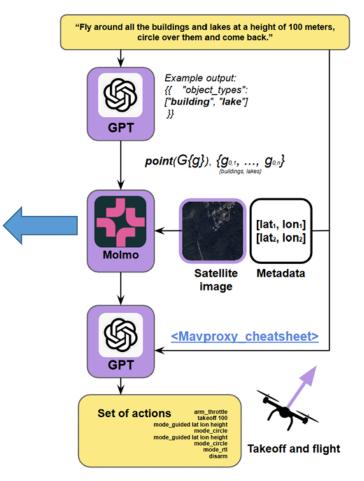


Fig. 1: The pipeline of the UAV-VLA system.

Method-步骤2.1-Molmo

```
输入: ->符合Molmo的数据格式
   "goals":
   {"id":"A<sup>h</sup>,"type":"start","note":"home position (if
known)"},
{"id":"B","type":"target","action":"circle","params":{"rad ius m":20,"alt m":100,"take_photo":true}}, {"id":"C","type":"target","action":"go_to","params":{"alt
"id":"finish","type":"return_to_launch"}
], "constraints": {"max_flight_time_min":30,
"no_fly_zones":[]}}
输出:
 { "detections": [
{"label":"B","bbox":[2296,1492,2336,1532],"centroid
":[2316,1512],"conf":0.97},
{"label":"C","bbox":[320, 410, 360,
450],"centroid":[340,430],"conf":0.94},
 "label":"A","centroid":[50,50],"conf":0.99}
"image meta":{"width":4096,"height":4096,"crs":"EPSG:
3857","transform":[...]}
```

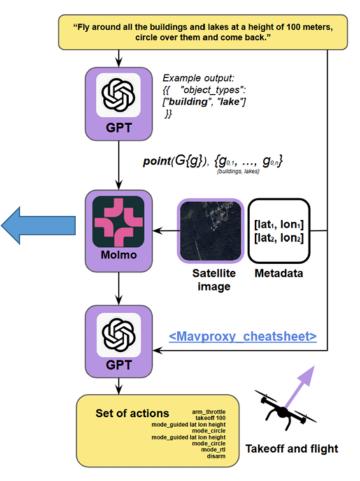


Fig. 1: The pipeline of the UAV-VLA system.

Method-步骤2.1-Molmo

注意:

加入指令中包含绕圈一周,这种情况 会将绕圈一周这种模拟数据转为离散数据, 比如给出8个点(离散数据)模拟绕圈一周的情况。

-这个<mark>是Molmo模型的功能</mark>。

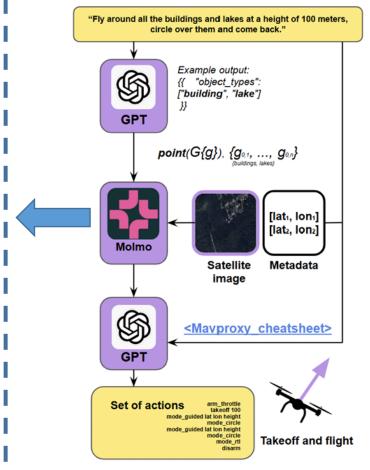


Fig. 1: The pipeline of the UAV-VLA system.

Method-步骤2.2-Metadata

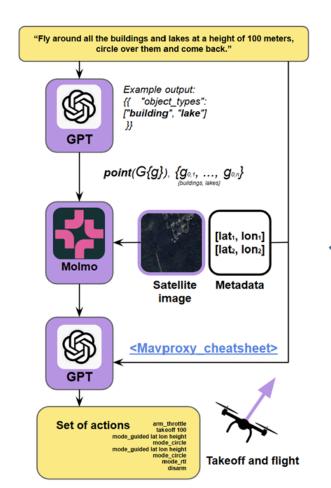


Fig. 1: The pipeline of the UAV-VLA system.

Metadata为卫星图像附带的地理空间信息。

这些信息一般包括:

- •地理参考信息 (Geo-referencing)
 - · 图像左上角(或某个角)的真实世界坐标(通常是经纬度或投影坐标 系下的值)。
- ·像素分辨率 (resolution)
 - 每个像素对应的实际距离(比如 1.5 米/像素)。
- •投影信息 (Projection / CRS)
 - 图像所用的坐标参考系统(如 WGS84 经纬度,或 UTM 投影坐标)。
- ·仿射变换矩阵 (GeoTransform)
 - 描述如何从像素坐标 (px, py) 映射到实际坐标 (X, Y)。

☆ 作用:

有了这些 metadata, 系统就能把 VLM 找到的像素点坐标 **投射到真实世界坐标**。 比如:

$$X = X_{origin} + px \times pixel_size_x$$

$$Y = Y_{origin} - py \times pixel_size_y$$

然后再根据投影系统转为经纬度 (lat, lon)。

Method-步骤2.2-Metadata

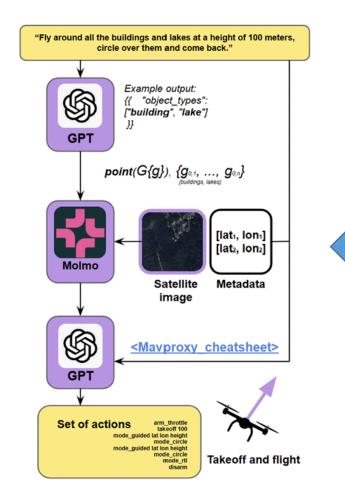


Fig. 1: The pipeline of the UAV-VLA system.

```
输入:
{ "detections": [
  {"label":"B","bbox":[2296,1492,2336,1532],"centroid":[2316,1512],"conf":0.97},
{"label":"C","bbox":[320, 410, 360, 450],"centroid":[340,430],"conf":0.94},
{"label":"A","centroid":[50,50],"conf":0.99}
"image meta": {"width": 4096, "height": 4096, "crs": "EPSG: 3857", "transform": [...]}
输出:
 "targets geo": [
  {"id":"A","lat":37.00050000,"lon":-122.00050000,"alt m":10},
  {"id":"B","lat":37.00100000,"lon":-122.00000000,"alt m":100},
  {"id":"C","lat":37.00000000,"lon":-121.99950000,"alt m":100}
```


Method-步骤3-GPT+Mavproxy_cheatsheet

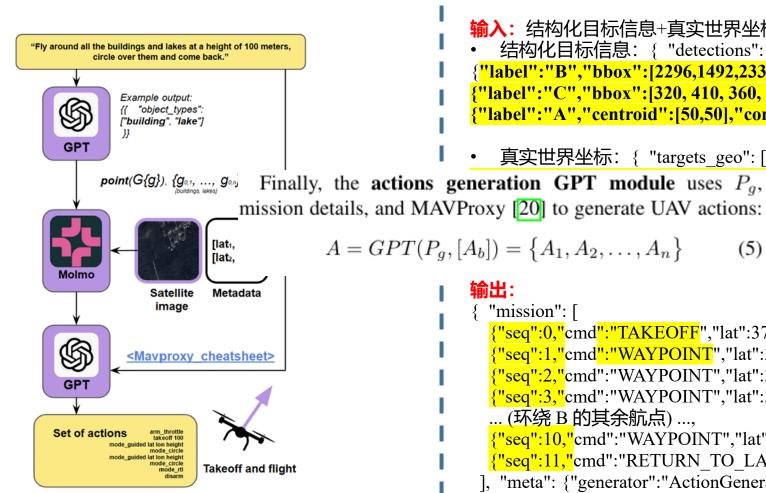


Fig. 1: The pipeline of the UAV-VLA system.

```
输入: 结构化目标信息+真实世界坐标+平台约束
   结构化目标信息: { "detections": [
{"label":"B","bbox":[2296,1492,2336,1532],"centroid":[2316,1512],"conf":0.97},
{"label":"C","bbox":[320, 410, 360, 450],"centroid":[340,430],"conf":0.94},
{"label":"A","centroid":[50,50],"conf":0.99}],
   真实世界坐标: { "targets geo":[
                                  122.00050000,"alt m":10},
                                  122.000000000,"alt m":100},
                                  -121.99950000,"alt m":100}]}
                                  nome 点、飞行规则(论文没提但应该加了)
 "mission": [
  {"seq":0,"cmd":"TAKEOFF","lat":37.0005,"lon":-122.0005,"alt m":10},
  {"seq":1,"cmd":"WAYPOINT","lat":37.0010,"lon":-122.0000,"alt m":100,"speed mps":5},
  {"seq":2,"cmd":"WAYPOINT","lat":37.0010,"lon":-121.99977503,"alt m":100},
  {"seq":3,"cmd":"WAYPOINT","lat":37.00112704,"lon":-121.99984093,"alt m":100},
  ... (环绕 B 的其余航点) ....
  {"seg":10,"cmd":"WAYPOINT","lat":37.0000,"lon":-121.9995,"alt m":100}, // C 点
  {"seq":11,"cmd":"RETURN TO LAUNCH"}
], "meta": {"generator":"ActionGenerationGPT v1","created":"2025-09-
23T19:05:00+08:00"}}
Mayproxy是一个飞控接口工具,通过指令、脚本实现无人机飞控
```


Method-步骤3-GPT+Mavproxy_cheatsheet

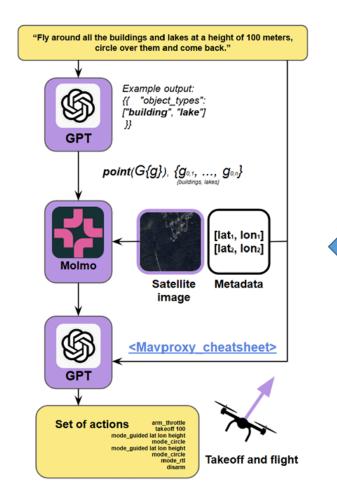


Fig. 1: The pipeline of the UAV-VLA system.

最终输出的指令是MAVproxy_cheatsheet格式的对应MAVProxy软件的控制命令

MAVProxy cheatsheet 就是 MAVProxy 软件的命令速查表, 方便快速查阅常用 UAV 控制命令。在论文里,它的作用是 说明生成的动作序列可以直接映射成 MAVProxy 命令,从 而让无人机执行任务。

Finally, the actions generation GPT module uses P_g , mission details, and MAVProxy [20] to generate UAV actions:

$$A = GPT(P_g, [A_b]) = \{A_1, A_2, \dots, A_n\}$$
 (5)

具体怎么使用GPT和MAVProxy输出运动指令的,原文没有任何体现,需要从代码里查了,但代码数据目前没完全公开。

UPD from the authors: Check the new paper. The code and training data of the new paper will be released soon!

Experiments-设置与结果

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_n - \hat{x}_n)^2 + (y_n - \hat{y}_n)^2}, \quad (6)$$

"实验在配备RTX 4090显卡 (24GB显存) 和Intel Core i9-13900K处理器的个人电脑上进行。由于内存限制,使用了 $RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_n - \hat{x}_n)^2 + (y_n - \hat{y}_n)^2},$ (6) 量化的Molmo-7B-D BnB 4位模型[22]。我们将无人机-VLA 系统牛成的飞行计划与人类生成的计划进行了比较。"

(a) Human-made

(b) UAV-VLA

TABLE I. COMPARISON OF RMSE METRICS FOR DIFFERENT METHODS

Metric (RMSE)	KNN (m)	DTW (m)	Sequential (m)
Mean	34.22	307.27	409.54
Median	26.05	318.46	395.59
Max	112.49	644.57	727.94

Presentation

Experiments-指标

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_n - \hat{x}_n)^2 + (y_n - \hat{y}_n)^2}, \quad (6)$$

• 思路:系统生成的轨迹点 按顺序——对应到人工轨迹点。

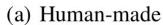
• 优点:实现简单,直观比较两条轨迹。

• 缺点:如果轨迹点数量或分布不一致,会出现误差累积,导致结果偏大。

类比:像是让两个人以相同的步伐走路,只要有一点步伐错位,后面就会越来越不一致。

2. DTW (Dynamic Time Warping, 动态时间规整)

- 思路:允许轨迹在时间维度上"拉伸/压缩",通过灵活匹配点来最小化整体差异。
- 优点:能处理两条轨迹速度不同或点数不一致的情况,更关注"轨迹形状"是否相似。
- 缺点: 计算复杂度比 Sequential 高。
- 类比:像是两个人走路时,一个快一个慢,DTW 会智能调整步子来匹配他们的路线, 而不是要求严格同步。

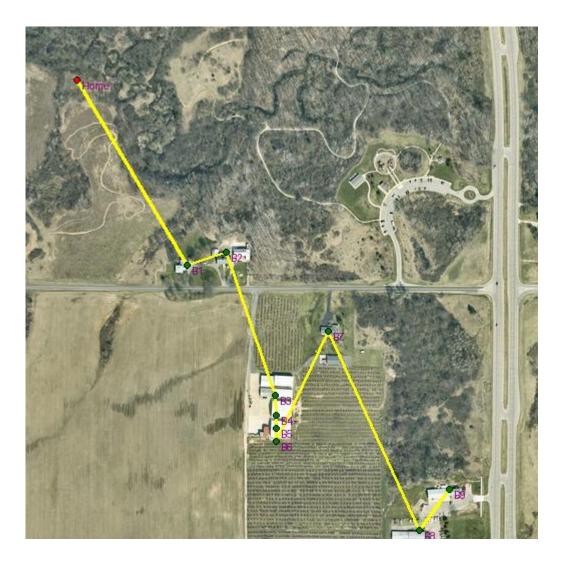


(b) UAV-VLA

- 3. KNN (K-Nearest Neighbors, 最近邻匹配)
- 思路:系统生成的每个点,都去找人工轨迹中 最近的点 来比较,完全忽略顺序。
- 优点: 更关注空间位置的接近程度, 误差通常最小。
- 缺点:不考虑路径的先后关系,可能忽视轨迹的顺序合理性。
- 类比:像是只比较两个人走过的"地点集合",不关心他们是按什么顺序到的。

Results

Results



Results

Thanks!

