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Abstract: The stable flight of drones relies on Global Navigation Satellite Systems (GNSS). How-
ever, in complex environments, GNSS signals are prone to interference, leading to flight instability.
Inspired by cross-view machine learning, this paper introduces the VDUAV dataset and designs
the VRLM network architecture, opening new avenues for cross-view geolocation. First, to address
the limitations of traditional datasets with limited scenarios, we propose the VDUAV dataset. By
leveraging the virtual–real mapping of latitude and longitude coordinates, we establish a digital
twin platform that incorporates 3D models of real-world environments. This platform facilitates the
creation of the VDUAV dataset for cross-view drone localization, significantly reducing the cost of
dataset production. Second, we introduce a new baseline model for cross-view matching, the Virtual
Reality Localization Method (VRLM). The model uses FocalNet as its backbone and extracts multi-
scale features from both drone and satellite images through two separate branches. These features
are then fused using a Similarity Computation and Feature Fusion (SCFF) module. By applying a
weighted fusion of multi-scale features, the model preserves critical distinguishing features in the
images, leading to substantial improvements in both processing speed and localization accuracy.
Experimental results demonstrate that the VRLM model outperforms FPI on the VDUAV dataset,
achieving an accuracy increase to 83.35% on the MA@20 metric and a precision of 74.13% on the
RDS metric.

Keywords: UAV localization; geo-location datasets; satellite; deep learning

1. Introduction

In recent years, the application of UAVs has expanded significantly in everyday life,
including logistics delivery, bridge inspections, and security patrols [1,2]. UAV flights
primarily rely on the Global Navigation Satellite System (GNSS) [3,4], but satellite signals
are easily disrupted in battlefield environments or obstructed areas, causing instability in
UAV flight. To address this issue, various auxiliary positioning methods have emerged,
including SLAM technology [5], Inertial Navigation Systems (INSs) [6], and vision-based
localization techniques [7–9]. While INS can provide continuous position information, it
suffers from accumulated errors over prolonged operations. SLAM, although efficient,
is limited by its need for real-time mapping and prior knowledge of the environment.
Therefore, this study focuses on using vision-based methods to solve the localization
challenge for UAVs operating in GNSS-denied environments [10]. The rapid advancements
in deep learning for image processing have propelled significant progress in fields such as
image retrieval [11], object tracking [12,13], and object detection [14,15], which, in turn, have
driven the development and application of vision-based UAV localization techniques. These
approaches overcome the limitations of traditional positioning technologies by leveraging
rich image features and a sophisticated understanding of complex scenes, enhancing both
accuracy and robustness in localization tasks.
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Among the methods that use cross-view image matching to address UAV navigation
in GNSS-denied environments, there are two primary approaches: retrieval-based meth-
ods [16] and direct image point-matching methods [17]. Retrieval-based approaches rely on
building a massive image database, where UAV images are matched against satellite images
in the database to estimate location. During training, metric learning is used to reduce the
distance between UAV images and similar satellite images to improve location estimation.
However, these methods require pre-collecting and constructing extensive image datasets,
and mismatches can degrade localization accuracy, posing challenges for computational
storage and processing. In contrast, Feature Point-based Inference (FPI) adapts concepts
from object tracking, directly identifying corresponding locations on satellite images using
UAV images, thereby reducing dependency on a satellite image database for cross-view
matching. FPI employs a Siamese network with separate branches that extract features
from UAV and satellite images without shared weights. By calculating the similarity be-
tween UAV and satellite feature maps, a heatmap is generated to map the UAV’s position
onto the satellite image. However, this approach compresses feature information through
multiple layers, leading to a significant loss of spatial details. Moreover, using only the
final feature layer for similarity calculations can hinder localization accuracy. The datasets
used in FPI are also limited, containing images from just 14 universities, which may limit
the model’s generalization across diverse real-world scenarios, thus affecting practical
localization accuracy.

Past datasets for cross-view matching research [18–24] have mostly focused on matching
between street-view and aerial images or between street-view and satellite images. The
introduction of the University-1652 dataset [25] provided a new perspective for cross-view
geographic localization by incorporating UAV images, covering buildings and campus scenes.
Subsequently, new datasets have been developed for UAV-based cross-view localization. For
example, the DenseUAV dataset [26] sampled densely across 14 universities to avoid biases
toward salient features, and the SUES-200 dataset [27] extended dense sampling to different
altitudes, providing a novel approach for high-altitude UAV localization. Clearly, dataset
construction is critical for UAV cross-view geographic localization. Traditionally, before testing
a UAV localization algorithm, UAVs need to capture a large number of raw images that meet
specific requirements to create corresponding datasets. This process consumes significant
human resources and time, posing limitations on the broader adoption of UAV cross-view
geographic localization methods in GNSS-denied environments.

Aiming at the above problems, this paper proposes a VDUAV dataset and designs a
VRLM network, aiming to break the problem of a single dataset scene that is not easy to
obtain, and, at the same time, optimize the network architecture to improve the positioning
accuracy. At the dataset level, considering the advantages of digital twin technology, this
paper imports the real scene model built by UAV using tilt photography technology in
Unity3d, corrects the embedded model coordinates, performs coordinate mapping between
the virtual platform and the real world through UTM projection, and finally builds a
virtual platform that can simulate the image captured by the downward-looking camera
of UAV in the real scene. The platform improves the production efficiency of the dataset
and overcomes the defects of the previous dataset, which only focuses on mining salient
features and high costs through the automated procedure of intensive sampling according
to specific routes. The platform also expands the richness of the sampling scene, which
can be switched to the 3D real-world model of different latitude and longitude areas,
expands the richness and breadth of the dataset in the denial of the environment when
UAVs carry out the cross-view geolocation algorithm, and finally obtains a dataset that
includes cities. In the end, the VDUAV dataset containing multiple scenes, such as cities,
plains, hills, factories, schools, rural areas, etc., is obtained, which ensures the diversity
and comprehensiveness of the dataset and thus improves the generalization ability of the
geolocation algorithm.

At the model level, a new cross-view matching network VRLM is proposed, which
uses the first three stages of FocalNet as the feature extraction module of the model and
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extracts the multi-scale features of different stages of UAV images and satellite images
through two branches. The shallow network can obtain more spatial information, while
the deeper network learns more abstract semantic information and extracts the multi-scale
features instead of outputting the final layer of feature information. The deeper network
can synthesize the information contained in the image more comprehensively, which brings
new ideas to the improvement of model performance. The obtained features are fed into
the Similarity Computing Feature Fusion (SCFF) module, which uses an adaptive approach
to the weighted fusion of multi-scale features, aiming at retaining the key distinguishing
features of UAV images and satellite images in a more complete way.

The main contributions of this paper are as follows:

1. Utilizing the advantages of digital twin technology, the construction of the VDUAV
dataset solves the problems of the traditional cross-view matching dataset with a
single scene and high production cost.

2. A new UAV cross-view geo-localization model, VRLM, is proposed, which performs
multi-scale feature extraction on UAV images and satellite images through the first three
stages of the FocalNet backbone network. This effectively mitigates the serious loss
of image position information due to multiple compression and designs an adaptive
multi-scale feature weighted fusion module (SCFF) to maximize the retention of image
information; this improves the running speed and positioning accuracy of the model.

3. Based on the VDUAV dataset and model proposed in this paper, using RDS as an
evaluation metric, the model accuracy is improved from 67.07% to 74.13% compared
with FPI, and the model achieves 45.13%, 64.71%, and 83.35% localization accuracies
at the 5 m, 10 m, and 20 m levels, respectively, when evaluated with the meter-level
accuracy rubric.

The remainder of this paper is organized as follows: Section 2 reviews related work.
Section 3 describes the construction of the digital twin platform. Section 4 introduces the
VDUAV dataset. Section 5 details the proposed VRLM baseline model. Section 6 presents
comparative experiments with the FPI geographic localization method. Section 7 provides
the results of ablation studies, and Section 8 concludes the paper.

2. Related Work
2.1. Geo-Location Datasets

In the context of drone self-localization in denied environments, the construction
of the datasets plays a crucial role in determining the accuracy of localization. Early
studies primarily relied on using publicly available maps and aerial images to create
image pairs [28]. Subsequently, the CVUSA dataset [29] introduced a method for matching
ground-level panoramic images from different regions in the United States with satellite
images. The VIGOR dataset [24] further improved retrieval accuracy by adjusting the
search area of the query images, while the University-1652 dataset [25] advanced drone
geolocation to a new stage by matching drone views with satellite images, significantly
enhancing the accuracy of drone self-localization.

Recent years have seen continued progress in research on matching drone views with
satellite images for geolocation. The DenseUAV dataset [26] introduced dense sampling
for drones, where adjacent images have overlapping regions, while also considering the
characteristic information and spatial layout of buildings. The SUES-200 dataset [27]
provided images from multiple different altitudes in the drone’s perspective, optimizing
the model’s compatibility across different flight heights. The GLVL method [30] improved
the accuracy of drone localization by matching downward-facing drone images with
remote sensing images, considering the influence of feature vector size and performing
orthogonal correction. The UL14 dataset [17], built on DenseUAV, transforms the task
from image retrieval to image matching, further enhancing the drone’s self-localization
capabilities. The UAV-VisLoc dataset [31] introduced a method for data collection across
multiple angles and scenes, increasing the diversity of the dataset and improving the
robustness and generalization of localization algorithms. Table 1 summarizes the existing
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geolocation datasets, detailing aspects such as sampling environments, dataset sizes, and
evaluation metrics.

Table 1. Abstract of the existing geographic positioning dataset.

Dataset Images Sampling Target Source Platform Evaluation Coverage

VDUAV 12.4k Dense UAV Virtual Reality Scene Virtual Drone-Satellite RDS&MA 5 provinces
UL14 10k Dense UAV Real Scenes Drone-Satellite RDS&MA Fourteen universities

DenseUAV 20.3k Dense UAV Real Scenes Drone-Satellite SDM Fourteen universities
SUES-200 6.1k Dense UAV Real Scenes Drone-Satellite Recall@K & AP A university

University-1652 50.2k Discrete Building Google Map Drone-Ground-Satellite Recall@K & AP 1652 architectures of 72 universities
VIGOR 144k Discrete User Google Map Ground-Aerial MA Four American states
CVUSA 71k Discrete User Google Map Drone-Satellite Recall@K United States

2.2. Deep Learning-Based Geo-Localization Method for UAV

In this paper, we focus on matching and localizing between drone images and satellite
images. With the advancement of deep learning technologies and the increasing application
of drones, many methods have emerged based on drone vision for geolocation.

Ding et al. [32] proposed a cross-view matching method based on location classifica-
tion, which simplifies the retrieval problem into a classification problem. This approach
considers the impact of feature vector size on matching accuracy, enabling bidirectional
matching between drone images and satellite images. Subsequently, Tian et al. [33] utilized
Perspective Projection Transformation (PPT) and Conditional Generative Adversarial Net-
works (CGANs) to synthesize drone images that closely resemble real satellite images. They
proposed an end-to-end UAV–satellite cross-view geolocation method. Mughal et al. [34] in-
troduced a complete end-to-end trainable architecture that applies probabilistic constraints
to dense correlation feature maps across different dimensions. This method simultaneously
performs feature learning and template localization, enhancing the matching accuracy of
drone images. Cui et al. [35] proposed a single-stage image retrieval method, designing
a segmented soft-margin triplet loss function. This function effectively avoids the issue
of the model parameters being trapped in a suboptimal set due to the lack of constraints
on positive and negative samples, thereby improving the accuracy of image retrieval and
achieving better convergence. Dai et al. [26] suggested comparing the similarity between
drone images and satellite images in vertical views by calculating the cosine distance
between them. The method then determines the most similar image by calculating the
cosine distance between the drone image and the satellite image database, thus achieving
drone localization and navigation.

These methods collectively contribute to advancing the field of cross-view geolocation
by improving the accuracy and efficiency of matching drone images with satellite images,
thereby enabling more robust and reliable drone self-localization in denied environments.

2.3. Transformer

The Transformer model, initially introduced for natural language processing [36,37],
has achieved remarkable success in tasks such as machine translation. Subsequent research
revealed that the attention mechanism of Transformers [38] also performs well in image
data processing. Traditional Convolutional Neural Networks (CNNs) [39] have been fun-
damental in image processing tasks, but they have limitations in handling global context
information and long-term dependencies. The introduction of Vision Transformer (ViT) [40]
addressed these limitations by segmenting images into sequences and embedding posi-
tional information. This approach leverages the self-attention mechanism in Transformers
to capture global context and better handle dependencies. Touvron et al. proposed the
Deit model [41], which achieved efficient classification on small-scale datasets through
knowledge distillation. Later, Wang et al. introduced the PVT model [42,43], incorporating
a multi-scale design with parallel pyramid structures to capture features at different scales.

Recent advancements in Transformer models for visual target tracking have been signif-
icant. Transtrack [44] introduced a multi-channel self-attention mechanism to model video
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sequences, improving target tracking accuracy by establishing global target–background
relationships. TransT [45] utilized multi-layer Transformer encoders to extract feature rep-
resentations from video sequences, effectively modeling spatial and temporal relationships
of targets for continuous tracking. Wang [46] applied this structure to the domain of drone
cross-view geolocation, using a dual-stream network with shared weights to extract features
from drone and satellite images. This approach predicts the relative positions and optimizes
the backbone network, enhancing the accuracy of drone geolocation in denied environments.

3. Digital Twin Platform Building

The digital twin platform was constructed through two main processes: 3D modeling
and coordinate mapping. For this setup, we selected a specific area in Zhejiang Province,
China, using a 1:500 scale topographic map for the survey. We captured the terrain of
the experimental area from multiple angles using oblique photogrammetry techniques.
These images were then processed using ContextCapture software 10.20 to create a 3D
realistic model in OSGB format. The OSGB model was imported into Unity3D, where it
was integrated into a virtual environment. We used the transverse Mercator projection
method to map the model’s coordinates, aligning the Cartesian coordinates in Unity3D
with the WGS84 latitude and longitude coordinates of the physical space.

Additionally, by accessing a wide range of pre-established 3D digital twin models
through public channels, we were able to enhance the dataset’s diversity and accuracy,
ensuring that it includes various regions and scenes for future applications.

3.1. UAV Tilt-Photography Modeling

Oblique photography technology, a shining star in the field of surveying, has seen
rapid development in recent years. To efficiently and accurately recreate the 3D scene
of the flight area, this paper uses advanced UAV oblique photography technology for
comprehensive real-world modeling. The technology involves capturing surface images
from five directions—vertical and four oblique angles (front, back, left, and right)—using
a multi-angle camera system mounted on the UAV. By setting up ground control points
within the survey area, the aerial images are oriented and transformed into coordinates.
The measurement results are unified and computed within the WGS84 coordinate system,
enabling rapid 3D reconstruction of large areas, as illustrated in Figure 1, which shows the
UAV oblique photography modeling process.

Photo capture

Drone tilted photography

Data preprocessing

Organize corresponding 

SRT documents

3D data optimization

Beam method leveling 

calculation

3D model reconstruction

ContextCapture generates 

dense 3D point clouds

Figure 1. Flowchart of UAV tilt-photography modeling.

1. Pre-Flight Setup: Data collection was conducted using a DJI M210 drone (Shenzhen
DJI Innovation Technology Co., LTD., Shenzhen, China). Prior to takeoff, the recon-
struction area was defined, and the drone’s flight path was automatically planned
based on the required overlap rate to ensure comprehensive coverage. During the
flight, an SRT file containing time-synchronized data was recorded. Exposure compen-
sation and other parameters were adjusted to ensure image clarity.

2. Data Preprocessing: The raw video and corresponding SRT files were organized. The
video was exported frame by frame into images, and waypoint data from the SRT
files were embedded into the corresponding image metadata. This step included the
calibration of the drone camera’s internal parameters.

3. The 3D Data Optimization: The processed camera calibration data and image data
were imported into Metashape software 2.0.4 for feature point extraction from images
taken from five different viewpoints. Bundle adjustment was employed to perform
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overall adjustment calculations, removing gross error points. Through multiple iter-
ations of bundle adjustment and point position adjustments, the optimized camera
poses for each image were obtained.

4. The 3D Model Construction: The collected images and processed data were im-
ported into ContextCapture software [47]. The optical properties, including sensor
dimensions and focal length information, are also imported. After verifying that the
information is correct, image matching is performed. Once matching is completed,
aerial triangulation is conducted, and ground control points are imported. A manual
association of ground control points with images is carried out, and the ground control
points are manually adjusted. Finally, aerial triangulation measurement is performed,
and once verified, a 3D model and orthophoto are generated.

3.2. Model Import

Integrating the OSGB 3D reality model constructed through UAV oblique photogram-
metry into the digital twin platform not only enhances the realism of virtual space visual-
ization but also facilitates the subsequent capture and creation of UAV localization datasets
in denied environments.

First, the constructed OSGB 3D reality model is integrated into Unity3D, as shown
in Figure 2a, along with the embedded UAV model. The virtual UAV simulation model
includes basic geometric shapes, physical properties, and sensor models. The 3D model
of the UAV is created using SolidWorks and imported into Unity. Next, a virtual camera
and physical collision model are added to the UAV within Unity. The virtual camera of
the UAV, illustrated in Figure 2b, uses Unity’s camera component to simulate the onboard
camera. This component allows for the configuration of the virtual camera’s mounting
angle and field of view to accurately replicate the actual UAV camera setup. Specifically,
by adjusting the virtual camera’s mounting angle and field of view, various visual effects
under different flight conditions can be simulated, providing realistic sampling data for
subsequent UAV geographic localization algorithms.

The UAV’s collision model, shown in Figure 2c, is simplified to a rectangular bounding
box that encompasses the actual dimensions of the UAV. This simplification enhances the
efficiency of simulation computations while maintaining accuracy in collision detection.

Figure 2. (a) The drone geolocation system built by importing the processed real-world 3D model
into the Unity3D engine using Digital Twin technology. (b) The virtual camera model. (c) The virtual
drone collision test model.

3.3. Accurate Mapping of Real and Virtual Space

Drones obtain absolute position information based on latitude and longitude coordinates
in physical space, while virtual space uses a Cartesian coordinate system. To achieve accurate
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mapping between these two systems, this paper adopts the Universal Transverse Mercator
(UTM) projection method for coordinate transformation between physical and virtual spaces.

The UTM projection divides the Earth into 60 zones, each covering 6° of longitude and
8° of latitude, and is a conformal transverse cylindrical projection. This paper performs
UTM projection transformations based on the WGS84 ellipsoid, converting geographic
length units to meters and geographic coordinate units to radians. This method effectively
maps the drone’s latitude and longitude coordinates from physical space to the Cartesian
coordinate system in virtual space, enhancing the accuracy and reliability of the virtual–
physical integration.

To convert latitude and longitude coordinates to planar Cartesian coordinates, the
forward UTM projection formulas are used:x = FE + k0

(
Ncl + N

6 c3l3l3 + N
120 c5l5l5 + N

5040 c7l7l7
)

y = FN + k0

(
M + Nt

2 c2l2 + Nt
24 c4l4l4 + Nt

720 c6l6l6 + Nt
40320 c8l8l8

) (1)

where FN and FE represent coordinate offsets, with FE being 0 in the Northern Hemisphere
and FN being 10,000,000 in the Southern Hemisphere. The parameter k0 is the scale factor,
while N denotes the radius of curvature in the prime vertical. The variable ϕ represents
latitude, and c is the cosine of the latitude. The term M signifies the meridian arc length
from the equator to the given latitude ϕ. Additionally, l3, l4, l5, l6, l7, and l8 are coefficients
corresponding to their respective terms in the equations.

To convert Cartesian coordinates back to latitude and longitude, the inverse UTM
projection formulas are used:

ϕ = ϕ f +
t f

2N2
f
x2∆x2 +

t f

24N4
f
x4∆x4 +

t f

720N6
f
x6∆x6 +

t f

40320N8
f
x8∆x8

λ = λ0 +
1

N f c f
∆x + 1

6N3
f c f

x3∆x3 + 1
120N5

f c f
x5∆x5 + 1

5040N7
f c f

x7∆x7
(2)

where parameters with the subscript f need to be calculated based on the latitude of the
bottom point ϕ f , and ∆x, x2, x3, x4, x5, x6, x7, x8, and ϕ f are computed as follows:

∆x = x−FE
k0

x2 = −1 − ν2
f

x3 = −1 − 2t2
f − ν2

f

x4 = 5 + 3t2
f + 6ν2

f − 6t2
f ν2

f − 3ν4
f − 9t2

f ν4
f

x5 = 5 + 28t2
f + 24t4

f + 6ν2
f + 8t2

f ν2
f

x6 = −61 − 90t2
f − 45t4

f − 107ν2
f + 162t2

f ν2
f + 45t4

f ν2
f

x7 = −61 − 662t2
f − 1320t4

f − 720t6
f

x8 = 1385 + 3633t2
f + 4095t4

f + 1575t6
f

ϕ f = y + β sin(2y) + γ sin(4y) + δ sin(6y) + ε sin(8y)

(3)

This study not only integrates autonomously collected drone oblique photography
models but also includes publicly available real-scene oblique photography models to enrich
the dataset’s content and coverage. Various regions with a wide range of latitudes and multiple
terrain features were selected to enhance the dataset’s diversity and comprehensiveness,
ensuring a thorough assessment and improvement of the system’s positioning accuracy.

To verify the consistency of the mapping between virtual and real-world location
points, we randomly selected nine reference points within the virtual environment. Subse-
quently, the latitude and longitude coordinates of these reference points were measured in
the field using high-precision Real-Time Kinematic (RTK) technology. These coordinates
were then converted to 3D coordinates using the UTM projection transformation formulas
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and compared with the 3D coordinates of the selected positions in the virtual space to
evaluate the mapping accuracy.

By quantifying the discrepancies between the two sets of coordinates, we assessed the
accuracy of the coordinate mapping. The red dots in Figure 3 represent the locations in
the virtual space corresponding to the latitude and longitude coordinates of the physical
reference points. The photos within the dashed boxes show the positions measured by the
RTK device in the physical space.

Figure 3. RTK field measurements.

The error distribution of the nine selected reference points is shown in Figure 4. The
maximum error was 0.51 m, the minimum error was 0.19 m, and the average mapping
error across the test samples was 0.38 m. This error could affect the creation of the drone
dataset in the virtual environment. Therefore, a self-checking mechanism was added to
the digital twin platform, excluding areas with errors greater than 0.2 m from the drone
dataset collection scenes. By implementing this self-checking mechanism, the reliability and
accuracy of the virtual dataset creation were improved, reducing the deviations between
the virtual and real environments.

Figure 4. Virtual reality mapping error analysis of nine arbitrarily selected measurement points on a
solid model of Hangzhou, China, measured by RTK.



Sensors 2024, 24, 6905 9 of 22

4. VDUAV Dataset
4.1. Dataset Creation

In Section 3.1, the established digital twin platform innovatively employs the UAV
downward-facing camera for image acquisition within the virtual space. This approach
differs from the methods used for data collection in previous datasets such as DenseUAV
and SUES-200. The dataset proposed in this study represents a pioneering integration
of digital twin technology with UAV geographic localization. It not only retains the
advantages of dense and multi-altitude sampling datasets but also incorporates a wide
range of 3D models from various geographic locations through publicly available sources.
Compared with traditional dataset creation methods, these publicly sourced models are
simpler and faster to obtain, enhancing the dataset’s diversity and geographic coverage.
This approach aims to ensure the richness and accuracy of the dataset while minimizing
the consumption of time and resources.

During the construction of the training set, the downward-facing camera of the drone in
the digital twin platform was used to photograph the ground vertically, employing a dense
sampling method for data collection. Unlike previous dataset creation methods, the flexibility
in controlling drone flight within the digital twin platform allowed us to introduce an interval
adjustment parameter δ, enabling the data collection interval to randomly vary between 20 m
and 30 m. For the vertical dimension, we introduced a height adjustment parameter η for each
selected shooting position, allowing random selection of three different altitudes between
100 m and 200 m above sea level. The specific construction process of the VDUAV dataset
is shown in Figure 5, and Table 2 details the multi-scene data collection in different regions.
The multi-level dense sampling requires the model to capture fine-grained features during
training and understand spatial information, enhancing the model’s ability to capture and
understand complex three-dimensional spatial information.

Figure 5. The construction process of the VDUAV dataset, which involves the UAV capturing images
every 20–30 m at each point; images are taken at three different heights ranging between 100 and 200 m.{

d = δ × 20, ∀δ ∈ (1, 1.5)
hi = ηi × 100, i = 1, 2, 3 ∀ηi ∈ (1, 2)

(4)

where d is the interval distance for data acquisition in the virtual environment, δ is the
interval adjustment parameter, hi represents the three flight altitudes selected at a waypoint,
and ηi is the height adjustment parameter used to adjust the drone’s flight altitude.
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Table 2. Dataset collected by UAVs in various regions and multiple scenarios, including geographical
environments and sample quantities.

Number Scenes Training (Count) Testing (Count)

1 City 2156 693
2 Plain 1667 574
3 Hill 1196 292
4 Factory 1354 433
5 University 2892 1153

Total Multiple Scenes 9265 3145

Most notably, all processes for completing drone image acquisition were carried out
within the digital twin platform, significantly saving the time and resources required for
real-world data collection. Drone images collected in multiple scenarios are shown in
Figure 6.

To ensure the accuracy of the satellite images, we collected them using level 20 tiles
from Google Maps. This approach provides high-resolution and clear satellite images,
allowing for a detailed display of geographic features and terrain characteristics.

Figure 6. Drone images collected from various scenarios, including urban areas, village regions, hilly
terrains, plains, university campuses, and industrial sites.

4.2. Drone–Satellite Map Data Pairs

Training Set Creation: Images from various scenes in the digital twin platform
were captured at different ranges and heights. GPS latitude and longitude information,
calculated from the virtual–real mapping, was embedded in each image’s EXIF file. Using
this GPS information, the corresponding drone capture points were located on pre-cut
satellite maps to create drone–satellite image pairs. Drone images in the training set were
center-cropped to a resolution of 256 × 256 × 3. Using the latitude and longitude information
stored in the EXIF files, the corresponding satellite images were quickly identified, and
their resolution was standardized to 1280 × 1280 × 3.

Test Set Creation: For the test dataset, we selected drone images from urban areas,
plains, hills, factories, and schools, ensuring no overlap with the training set. Correspond-
ing satellite images were identified based on the GPS coordinates of the drone images. The
satellite images for the test set were standardized to a resolution of 384 × 384 × 3. Unlike the
training set, we applied data augmentation to the satellite images in the test set. Specifically,
we selected satellite image ranges at 100-pixel intervals, from 700 pixels to 1800 pixels,
creating 12 different scales of satellite images. The 700-pixel scale corresponds to a physical
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space dimension of approximately 180 m × 180 m, while the 1800-pixel scale corresponds
to approximately 463 m × 463 m.

Figure 7 illustrates the dataset configuration. Figure 7a shows the training set with a
1:1 ratio of drone images to satellite images. Figure 7b depicts the test set with a 1:12 ratio,
where drone images are enclosed in red dashed boxes, and satellite imagery is included
between the red dotted line and the black dotted line. The red solid dots indicate the true
locations of the drones in the satellite images. Table 3 shows the distribution of drone and
satellite images in the training and test sets.

Table 3. The ratio of training to testing datasets for UAV images is 3:1, and the ratio of UAV images
to satellite images in the training set is 1:12.

Split UAV (Count) Satellite (Count)

Train 9265 9265
Test 3145 37,740

To ensure precise alignment between drone and satellite images, the drone images
were cropped to match the geometric centers of the corresponding satellite images. To
better train the model and address image discrepancies caused by temporal shifts, data
augmentation was applied. Satellite images were dynamically cropped to various scales,
with excess areas filled with average pixel values, as shown by the gray-filled portions in
Figure 7b. This approach aims to improve the model’s generalization capabilities.

Figure 7. (a) The training set, where the ratio of drone images to satellite images is 1:1. (b) The test
set, where drone images are enclosed in red dashed boxes, and satellite images are enclosed in black
dashed boxes, with a ratio of 1:12. The solid red dots in the images indicate the actual positions of the
drones in the satellite images.

5. Methods

In this chapter, we will provide a detailed introduction to the geographic localization
algorithm framework and the specifics of each module. Section 5.1 presents the overall
framework of the VRLM localization algorithm, which achieves drone localization through
feature extraction, feature fusion, and heatmap generation. Section 5.2 explains the ad-
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vantages of the FocalNet backbone network. Inspired by Transformer networks, FocalNet
incorporates focus modulation and context aggregation modules for more refined image fea-
ture extraction. Section 5.3 details the Similarity Calculation Feature Fusion module (SCFF),
which computes and merges features extracted by the dual-stream backbone network. This
fusion of shallow spatial information and deep semantic information significantly enhances
the algorithm’s localization accuracy.

5.1. Deep Learning Modeling Framework

In this section, we introduce the framework of the VRLM-fused geographic localization
model, as illustrated in Figure 8. This network adopts a structure similar to the Siamese
dual-stream network for feature extraction between drone and satellite images. However,
unlike traditional methods, using a weight-sharing network might not be beneficial due to
the significant differences between drone and satellite images.

We chose to input 256 × 256 × 3 drone images and 384 × 384 × 3 satellite images
into two networks without shared weights. FocalNet is used as the backbone network
for feature extraction from both sets of images. Inspired by the attention mechanism of
Transformer networks, FocalNet incorporates the Context Aggregation Module (CAM) and
Focal Modulation Module (FMM), enabling the network to capture both local and global
feature information, thereby improving the model’s performance.

The extracted features from the three stages are fed into the Similarity Calculation
and Feature Fusion (SCFF) module. This module computes the similarity between the
downscaled drone and satellite images to the same dimension and derives their adaptive
weights. Finally, the features are weighted and fused to generate a heatmap with precise
location information, which is then mapped back onto the satellite image.
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Figure 8. The VRLM fusion localization network framework first performs feature extraction to obtain
two sets of features, U1, U2, U3 and S1, S2, S3. Subsequently, the similarity between the two sets of
features is calculated, represented by yellow spheres. The purple spheres represent weighted fusion,
ultimately generating a heatmap.

5.2. Backbone Network

The drone images (denoted as U, with dimensions WU × HU × 3) and satellite images
(denoted as S, with dimensions WS × HS × 3) are input into the FocalNet network. We
choose the first three stages of this network for feature extraction, with each stage con-
sisting of 2, 2, and 6 layers, respectively. After processing through each stage, the output
image resolution is halved in both height H and width W, and the number of channels is
adjusted to 192, 384, and 768. Specifically, the outputs are H

8 × W
8 × 2C, H

16 × W
16 × 4C, and

H
32 × W

32 × 8C. Each stage repeats a similar structure: first, a convolutional layer extracts the
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initial feature map, which then enters the Focus Modulation Module (FMM). FMM selec-
tively enhances features in regions of interest using a local attention mechanism, calculates
the focus modulation weights, and applies them to the feature map, allowing the network
to concentrate more on significant areas. Next, the Context Aggregation Module (CAM)
enhances features from a global perspective, supplementing the fine-grained information
extracted by FMM. CAM aggregates contextual information from the entire feature map
through a global attention mechanism, computes weights, and fuses the global context
information with the fine-grained features. After a series of processes, the final feature
maps are obtained as 12 × 12 × 768 and 8 × 8 × 768.

Inspired by the self-attention mechanism in Transformer networks, FocalNet intro-
duces the Focus Modulation Module and Context Aggregation Module. These modules
not only enable the dynamic weighting of features through the “focus” mechanism but also
capture long-range dependencies, retaining critical information while reducing computa-
tional complexity. This helps the network better understand the semantic information of
input images and enhances its ability to comprehend complex visual scenes.

5.3. Similarity Computation Multi-Feature Fusion Module

FocalNet extracts features at different scales across three stages. We observed that the
shallow layers of the network contain more spatial feature information, while the deeper
layers contain more semantic information. By utilizing the Similarity Calculation Feature
Fusion (SCFF) module, we dynamically select and fuse multi-level features to better capture
multi-scale target information. The extracted feature maps are first dimensionally reduced
to unify their dimensions. Then, we calculate the similarity between the drone and satellite
feature maps, pair by pair. An adaptive weighting mechanism fuses the information from
these similarity-calculated feature maps. This fusion preserves the advantages of multi-
scale features and reduces feature redundancy through spatial weighting, thus enhancing
the accuracy of the algorithm.

Taking the three sets of features {U1, U2, U3} extracted from the drone branch as an
example, we first use a 1 × 1 convolution kernel to adjust the channel numbers and unify
the dimensions of the feature maps, resulting in {U1∗, U2∗, U3∗}. The processed drone and
satellite feature maps are then calculated using cosine similarity to obtain A1, A2, A3. Next,
we employ a 1 × 1 convolution kernel and a softmax function for adaptive weight learning,
yielding the spatial weight parameters αij, βij, γij, which are normalized. Finally, features
are weighted and fused according to these weights, preserving the strengths of multi-scale
features while effectively integrating them through the adaptive weighting mechanism.

xl
ij = αl

ij · A1→l
ij + βl

ij · A2→l
ij + γl

ij · A3→l
ij (5)

αl
ij =

eλαij

eλαij + eλβij + eλγij

βl
ij =

eλβij

eλαij + eλβij + eλγij

γl
ij =

eλγij

eλαij + eλβij + eλγij

(6)

Here, u1→l
ij , u2→l

ij , and u3→l
ij represent the values of feature maps A1, A2, and A3 after

being upsampled and aligned to the same resolution. αl
ij, βl

ij, and γl
ij are the adaptive

weight parameters, indicating the weights of the feature maps at position (i, j), with λ as a
tuning parameter to control the smoothness of the weights.

6. Experiment
6.1. Experimental Details

The training process was conducted on an NVIDIA 1080TI GPU, using PyTorch 1.10.2
and Python 3.7 as the software environment. The training parameters included a batch size
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of 16, 32 epochs, and a learning rate set to 0.0001. FocalNet was selected as the backbone
network for the VRLM model, utilizing publicly available pre-trained weights.

Drone images were standardized to a size of 256 × 256 × 3, while satellite images were
adjusted to 384 × 384 × 3. The dual-stream branches of the network extracted features from
the first three stages, with depths of 2 layers, 2 layers, and 6 layers, respectively. These
extracted features were then input into the Similarity Computation Feature Fusion module
for fusion.

6.2. Datasets and Evaluation Indicators

This study uses the VDUAV dataset, which combines the dense sampling characteris-
tics of the DenseUAV dataset, where overlapping regions exist between adjacent frames
to enhance the model’s ability to capture fine-grained features. It also incorporates the
varied altitude sampling characteristics of the SUES-200 dataset, enhancing the model’s
ability to recognize relevant spatial information. The dataset includes diverse scenarios
with significant differences in building characteristics, such as rural areas, cities, campuses,
hills, and factories, posing a challenge to the robustness and generalization capability of
the localization model. The training set consists of 9265 drone images and an equal number
of satellite images. The test set features data augmentation for the satellite images, with a
ratio of 1:12 between drone and satellite images. This comprehensive dataset enables the
model to better handle various complex real-world scenarios.

To ensure fairness, the same evaluation metrics as FPI are adopted: Meter-level
Accuracy (MA@K) and Relative Distance Score (RDS). MA@K assesses the deviation from
the actual geographic location, while RDS evaluates the pixel deviation in satellite images.
The formula for MA@K is:

MA@K =
1
N

N

∑
i=1

Ii (7)

where ei is the localization error in geographic space for the i-th sample. The accuracy Ii for
a single sample is determined based on whether its spatial localization error is within the
threshold K.

Here, K is an adjustable parameter representing the real spatial distance in meters,
and N is the number of test samples in the dataset. MA@K intuitively reflects the model’s
performance by calculating the accuracy and latitude distance between the actual and
predicted positions. The formula for RDS is:

RDS = e−k×

√
( dx

w )
2
+(

dy
h )

2

2 (8)

where w represents the pixel width of the satellite image, h represents the pixel height, dx
is the pixel distance between the predicted and actual horizontal coordinates, and dy is the
pixel distance between the predicted and actual vertical coordinates. The scaling factor
k is set to 10. RDS provides a more comprehensive assessment of model performance by
evaluating the pixel-level accuracy of the predicted positions.

6.3. Main Results
6.3.1. Comparative Analysis of Positioning Methods

To ensure the rigor and comprehensiveness of the experimental results, we compared
the proposed VRLM geographic localization method with mainstream image-matching local-
ization methods (FPI and WAMF-FPI) on the same VDUAV dataset. Table 4 presents the RDS
scores, parameter counts, computational operations, and meter-level precision across different
thresholds for each model. It is evident that VRLM reduces both parameter complexity and
computational load compared to FPI and WAMF-FPI. After feeding 256 × 256 × 3 UAV images
and 384 × 384 × 3 satellite images into the network, the experimental results highlight the
superior performance of VRLM. At lower GFLOPS, VRLM achieved a 7.06-point improvement
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in comprehensive RDS scores compared to FPI, and its localization performance also showed
significant advantages over WAMF-FPI. Additionally, we evaluated the meter-level localiza-
tion precision of VRLM, as illustrated in Figure 9. Compared to FPI, our model demonstrated
consistent improvements across various distance thresholds (5 m, 10 m, and 20 m), with
precision gains of 13.32%, 12%, and 11.38%, respectively.

Figure 9. The localization accuracy of FPI, WAMF-FPI, and VRLM using the MA evaluation metric.

This may be due to the loss of feature information due to multiple compression
of the image feature output from the last layer of the backbone network in FPI, which
is noted in WAMF-FPI, which modifies the model structure so that the model outputs
feature information at each stage, followed by multi-feature fusion, which leads to an
improvement in the model’s RDS metric scores and the meter-level accuracy localization
results. However, its PCPVT network uses a fixed multi-scale pyramid feature extraction
method, which lacks flexibility in capturing local and global information and consumes too
many computational parameters and computational speed, greatly reducing the speed of
model inference. At the same time, the UL14 dataset used by FPI and WAMF-FPI consists
of only 14 colleges and universities in Zhejiang Province, and the model trained from this
dataset lacks generalization ability, and its localization accuracy will be greatly reduced
if the FPI and WAMF-FPI models are used to validate the areas with large differences in
architectural structures, such as rural areas, urban areas, and plains. In this paper, the first
three stages of the FocalNet network are used to replace the feature extraction module in
WAMF-FPI for multi-feature extraction. The focal mechanism has a more efficient feature
aggregation ability so that the network can focus on the local features while also integrating
the global information appropriately. There is a more efficient ability to capture the details
and connect the context in complex scenes, which improves the model’s sensitivity to
the complex image and detail sensitivity of the model to complex images and changes in
details. Moreover, the focal mechanism can extract key features when the dataset changes
significantly (e.g., scene, lighting, viewpoint, etc.) through flexible feature selection, which
enhances the generalization ability of the model. This is especially important when training
datasets containing multiple geographic environments.

At the same time, a multi-feature weighted fusion structure, SCFF, is designed. Com-
pared with FPI, which directly performs similarity computation on the last feature map,
the low-resolution feature maps directly affect the final accuracy of the model. The SCFF
module first uses weighted fusion to fuse the multi-scale feature maps generated in the first
three phases of the FocalNet network so that the features of similarity computation not only
include the high-resolution feature maps but also the spatial information of the horizontal
feature maps and the spatial information of the horizontal feature maps. The features for
similarity calculation not only contain the spatial information of the high-resolution feature
maps but also fuse the deeper feature maps with rich semantic information through the
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horizontal connection structure, which speeds up the computation speed of the model and
improves the accuracy of the localization algorithm at the same time.

Table 4. Performance comparison of VRLM method and FPI method on VDUAV dataset.

MODEL RDS (%) GFLOPS Params MA@5 (%) MA@10 (%) MA@20 (%)

FPI 67.07 12.66 42.57 31.81 52.72 71.97
WAMF-FPI 70.48 12.04 34.69 40.27 60.31 78.49

VRLM 74.13 10.28 21.79 45.13 64.72 83.35

We further evaluated the model’s performance on satellite maps of varying scales
(ranging from 700 pixels to 1800 pixels). As illustrated in Figure 10, the performance of
FPI, WAMF-FPI, and VRLM was analyzed across six images, each representing the model’s
localization accuracy at different satellite image scales for 5 m, 10 m, 20 m, 30 m, 40 m, and
50 m accuracy levels. The x-axis indicates the scale of the satellite images, while the y-axis
shows the corresponding localization accuracy at each level. The results demonstrate that
the VRLM model consistently outperformed both FPI and WAMF-FPI across all scales of
satellite maps, highlighting its robustness and generalization capability when dealing with
data at different resolutions.

Figure 10. Comparing the performance of different models on varying satellite map sizes, with
the x-axis representing the scale of the satellite images and the y-axis representing the localization
accuracy of the models at the corresponding level. (a) Localization accuracy at 3 m. (b) Localization
accuracy at 5 m. (c) Localization accuracy at 10 m. (d) Localization accuracy at 20 m. (e) Localization
accuracy at 30 m. (f) Localization accuracy at 50 m.

The visualization of the geographic localization results using the VRLM network
model is presented in Figure 11. The first row shows the UAV aerial images that require
location queries as input to the network, while the second row represents the corresponding
satellite images of the query regions. The third row displays the geographic localization
results predicted using a heatmap, where the green circles indicate the actual geographic
locations, and the blue circles represent the predicted geographic locations based on the
output of the localization model. The numerical values in the upper left corner provide
a direct measure of the meter-level displacement between the predicted results and the
actual labels, vividly illustrating the model’s spatial localization capability.



Sensors 2024, 24, 6905 17 of 22

Figure 11. The prediction results are displayed on the heatmaps.

6.3.2. Comparison of Different Data Sets

We conducted experiments using the same baseline model and hyperparameter set-
tings on both the UL14 and VDUAV datasets. As shown in Figure 12, the VDUAV dataset
significantly outperforms the UL14 dataset at smaller spatial distance thresholds (5 m and
10 m). This discrepancy in accuracy can be attributed to the sampling heights used during
data collection. The VDUAV dataset, collected at higher altitudes, captures more spatial
features, resulting in richer images and improved localization accuracy. Another potential
reason for the performance difference is the method of dataset partitioning. The VDUAV
dataset was uniformly sampled across multiple regions and scenarios and then divided
into training and test sets at a 3:1 ratio. Due to the dense sampling, some test images might
overlap with the training set, enhancing model accuracy. In contrast, the UL14 dataset used
10 universities for the training set and a completely separate set of 4 universities for the test
set, ensuring no overlap between the training and test data.

The higher accuracy of the VDUAV dataset at smaller distance thresholds demonstrates
its potential for precise localization in scenarios requiring detailed spatial information.
These findings highlight the importance of both dataset quality and partitioning strategies
in model performance evaluation.

Figure 12. Comparison of localization performance between the UL14 dataset and the VDUAV dataset.



Sensors 2024, 24, 6905 18 of 22

7. Controlled Experiment and Analysis
7.1. Comparative Experiments on Backbone Networks

To explore the impact of various backbone networks on the UAV-based geographic
localization algorithm, we selected the following mainstream networks: Deit, Pvt, Pcpvt,
and FocalNet. These networks were used for feature extraction from both drone and satellite
images. As shown in Figure 13 and detailed in Table 5, the experimental results indicate
that the Transformer-based Pvt and Pcpvt networks achieve higher localization accuracy
compared to the Deit backbone network. The superior performance of Pvt over Deit can be
attributed to its pyramid structure, which allows for better multi-scale feature extraction.
This capability is particularly beneficial when processing drone and satellite images of
different resolutions. On the other hand, Pcpvt combines the local feature extraction ability
of convolutional neural networks with the global modeling ability of Transformers, thus
showing improved performance in UAV self-localization tasks in complex environments.

The FocalNet network employed in this study introduces a “focal” mechanism, which
enhances the model’s ability to focus on specific regions, thereby improving its handling of
fine details. This mechanism enables the model to concentrate more on the central areas
of UAV images, which leads to improved localization accuracy and robustness. When
processing UAV images, FocalNet efficiently captures key feature regions, particularly
in geographic localization tasks, outperforming traditional networks that rely solely on
global features. This targeted focus on specific feature regions allows the model to maintain
stable performance, even in complex terrains and environments, further enhancing its
generalization ability and reliability.

Table 5. Scoring of RDS based on different backbone networks.

Deit Pvt Pcpvt FocalNet (Our) RDS (%)

✓ 62.94
✓ 66.29

✓ 74.13
✓ 74.13

Figure 13. The localization accuracy of the four backbone networks using the MA evaluation metric.

7.2. Comparative Experiments of Fusion Methods

In fusing the extracted features, this paper considers that the VDUAV dataset contains
satellite images of varying scales and complex environmental information, which signifi-
cantly differs from the drone images input into the network. To address this, we explored
using FPN, ASFF, and APFM to fuse the multi-scale features extracted from these images.
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As depicted in Figure 14 and Table 6, the experimental results indicate that the model’s
localization performance significantly improved after feature fusion with SCFF, achieving
an RDS evaluation metric of 74.13%. In comparison, FPN and ASFF achieved 62.94% and
66.29%, respectively. Specifically, FPN integrates features from different levels through
top-down sampling and lateral connections, but its fixed feature fusion approach limits
flexibility in handling multi-scale features. Although ASFF enhances flexibility by adap-
tively selecting and fusing features of different scales through learning weights, it incurs
higher computational complexity.

The SCFF (Scale-Constrained Feature Fusion) module combines the strengths of multi-
scale fusion from Feature Pyramid Networks (FPN) and adaptive feature fusion from Adap-
tive Spatial Feature Fusion (ASFF). It processes the three extracted features, U1, U2, U3,
by first applying convolution operations to unify them to the same dimension. These
are then paired with the corresponding processed features extracted from the satellite
images, S1, S2, S∗

3 , for similarity computation. This process yields adaptive weights α, β, γ
for each feature, which are used to perform weighted feature fusion. By doing so, the fused
features contain both the shallow spatial information from the low-resolution images and
the semantic information from the deeper layers, enhancing the final localization results.
This adaptive weighting ensures that the model effectively captures and integrates both
detailed local features and global contextual information, resulting in improved accuracy
and robustness in UAV localization tasks.

Table 6. Scoring of RDS based on three fusion methods.

FPN ASFF SCFF (Our) RDS (%)

✓ 62.94
✓ 66.29

✓ 74.13

Figure 14. The localization accuracy of the three fusion methods using the MA evaluation metric.

8. Conclusions

This study addresses the issue of UAV self-localization in denied environments by
focusing on two main aspects: dataset construction and network model design. We in-
troduced the VDUAV dataset and the VRLM cross-view matching model, generating the
dataset by automatically capturing images of physical models on a digital twin platform.
This approach overcomes the limitations of traditional datasets, which often feature ho-
mogenous scenes and are challenging to obtain, making cross-view matching datasets
more diverse and representative. On the model front, we leveraged the focal mechanism
within the FocalNet network, enabling the model to focus on local features while also
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integrating global information. This design allows for more effective capture of details and
contextual understanding in complex scenes. The multi-scale feature information extracted
from the first three stages of the network was processed through the SCFF module, where
these features were fused in a multi-scale weighted manner, significantly improving both
the model’s operational speed and localization accuracy. Our method achieved remark-
able results, with testing on the VDUAV dataset showing an improvement in MA@20
accuracy to 83.35% and an RDS accuracy increase to 74.13%, significantly outperforming
previous models.

However, there are still some limitations to our current work. Our model is only
capable of determining the latitude and longitude of the UAV’s location and does not yet
address altitude localization. Additionally, there is still room for further optimization in
both localization accuracy and processing speed. In future research, we aim to address the
UAV altitude localization issue and plan to test the approach on real UAV platforms. These
efforts will contribute to advancing UAV visual localization technology further.
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