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Abstract

Embodied localization based on vision and natural lan-
guage dialogues presents a persistent challenge in em-
bodied intelligence. Existing methods often approach this
task as an image translation problem, leveraging encoder-
decoder architectures to predict heatmaps. However, these
methods frequently experience a deficiency in accuracy,
largely due to their heavy reliance on resolution. To address
this issue, we introduce CGD, a novel framework that uti-
lizes causality guided diffusion model to directly model co-
ordinate distributions. Specifically, CGD employs a denois-
ing network to regress coordinates, while integrating causal
learning modules, namely back-door adjustment (BDA) and
front-door adjustment (FDA) to mitigate confounders dur-
ing the diffusion process. This approach reduces the de-
pendency on high resolution for improving accuracy, while
effectively minimizing spurious correlations, thereby pro-
moting unbiased learning. By guiding the denoising pro-
cess with causal adjustments, CGD offers flexible control
over intensity, ensuring seamless integration with diffusion
models. Experimental results demonstrate that CGD out-
performs state-of-the-art methods across all metrics. Ad-
ditionally, we also evaluate CGD in a multi-shot setting,
achieving consistently high accuracy.

1. Introduction

With the rapid development of embodied intelligence in

the field of artificial intelligence, precise localization has

become a key capability for agents to perform down-

stream tasks such as emergency rescue [33, 45] and navi-

gation [7, 22, 65]. However, achieving precise localization

is still challenging for agents, especially in many human-

robot interaction application scenarios [43]. To address this
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Figure 1. Thumbnail of CGD. De-confounded features are used

to guide stable and unbiased denoising process. Interventions are

implemented in both language and vision, enhancing the model’s

ability to generalize to unfamiliar environments.

problem, Embodied Dialogue Localization (EDL) [18] is

emerging as an important area of research that aims to pro-

vide agents with human-like map localization capabilities.

The main challenge of EDL is to achieve cross-modal

alignment and accurate localization on top-down maps. Pre-

vious approaches [17, 18, 71] modeled this challenge as

an image-to-image transformation problem, using UNet or

encoder-decoder architectures that convert raw images into

heatmaps to predict the probability of coordinates. How-

ever, while these methods achieve good accuracy in a coarse

range, they struggle with precise localization. DiaLoc [71]

attempts to alleviate this problem by dividing dialogs into

multiple rounds and updating the heatmap iteratively. How-

ever, heatmap-based methods are highly dependent on res-

olution, and resolution increase leads to exponential growth

in computational complexity. On the other hand, these

methods experience significant accuracy drops when gener-

alized to unseen environments. Although using data aug-

mentation or generating additional dialogs using LLMs
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has made progress in improving generalization capabilities,

such approaches may be insufficient due to the inherent

dataset biases [42, 68].

To address the above challenges, we propose a novel

solution: improving the accuracy of EDL using causality

guided diffusion models. By directly modeling the proba-

bility distribution of continuous locations, we aim to reduce

reliance on resolution while improving localization accu-

racy. Due to the ambiguity of natural language, the prob-

ability distribution of continuous locations is often com-

plex and variable. We observe that existing diffusion mod-

els [20, 40] offer an efficiency advantage in modeling such

complex distributions, and therefore we utilize the denois-

ing process in diffusion models to improve the prediction

accuracy. However, as discussed before, objects in images

and dialogs may introduce biases while guiding localiza-

tion. For instance, as illustrated in Fig. 1, the conditional

probability p (bed | Christmas tree) is high. However,

there are no such strong causal relationships between these

objects. Additionally, when certain room types are over-

represented in the training set, the model may inappropri-

ately associate these features, leading to incorrect predic-

tions when the text instruction changes. Due to such biases

in the dataset, the effectiveness of diffusion models is in-

herently limited: irrelevant information in the input is inde-

pendent of the predicted labeling, and thus the gradient can

produce arbitrary or even antagonistic directions in the input

space. Therefore, inspired by Classifier-free guidance [19],

we creatively introduce causality guidance in the diffusion

model to make the denoising process more robust and im-

prove the generalization of the model in unseen environ-

ments.

Specifically, we propose a novel framework called

Causality Guided Diffusion (CGD) to address the two main

challenges mentioned above: 1) improving localization ac-

curacy, and 2) reducing the interference of confounders. As

shown in Fig. 2, the CGD framework comprises a diffu-

sion network and a unified causal inference module, which

includes both back-door adjustment (BDA) and front-door

adjustment (FDA). First, we use the denoising process of

the diffusion network to optimize the final coordinate pre-

diction gradually. Second, a unified causal inference mech-

anism is introduced to deal with confounders in EDL. This

unified approach addresses two categories of confounders:

observable and unobservable. Observable confounders are

related to content and are relatively straightforward to iden-

tify, such as keywords in dialogue and room types in the

environment. On the other hand, unobservable confounders

involve more subtle stylistic factors that are harder to de-

tect but can still influence the system as a whole, such as

decoration styles and lighting in visual inputs, or sentence

structures in language. Using the de-confounded features as

guidance, we seamlessly integrate the causal learning mod-

ule with the diffusion network, leading to a robust and un-

biased denoising process and enhancing the model’s gener-

alization ability in unseen environments.

In summary, our contributions can be summarized as fol-

lows: 1) We propose a novel CGD framework, leveraging

diffusion models for directly modeling coordinate distribu-

tions to address embodied dialogue localization. This ap-

proach reduces the dependence on resolution for improv-

ing accuracy and enables precise localization within fine

range. 2) We unify causal learning frameworks with dif-

fusion models, integrating front-door and back-door adjust-

ments to address observable and unobservable confounders,

respectively. The de-obfuscated features serve as guidance

for the denoising process, thereby enhancing the model’s

generalization ability in unseen environments. 3) Extensive

evaluation of CGD shows that it achieves state-of-the-art

performance, especially in unseen environments.

2. Related Work

2.1. Embodied Dialogue Localization

Recently, multimodal embodied AI tasks have attracted

much attention, including embodied QA [11, 70], visual

language navigation (VLN) [8, 16, 22, 63], and visual re-

arrangement [53, 64], etc. One essential capability embod-

ied agents need for practical applications is localizing under

language guidance. Pate et al. [37] propose a dataset that

uses language descriptions instead of dialogues to guide lo-

calization. Text2Loc [66] explores localization in outdoor

scenes based on point cloud. LingUNet [18] is the first

to propose the EDL task. They propose the WAY dataset

containing about 10,000 natural language dialogues, all of

which are manually annotated by human operators from the

first-person perspective of the agent. LingUNet models this

complex task as an image-to-image conversion problem, us-

ing the upsampling and downsampling process of a UNet

network to predict the target location on the top-down map.

In contrast, LED-BERT [17] uses the navigation graph ex-

tracted from Matterport3D [6] instead of the top-down map

and is the first to introduce Transformer [55] for multimodal

alignment. DiaLoc [71] explores a new setting for embod-

ied dialogue localization under multi-shot, divides conver-

sations into multiple rounds, and inputs them into the model

separately, which is more in line with human positioning

thinking mode. Despite their advantages, heatmap-based

methods still struggle with precise, fine-range localization

due to limitations tied to resolution. To address this, we in-

troduce a novel approach that directly models the original

coordinate distribution using a diffusion model, enhancing

model generalization and robustness under the guidance of

causality.
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2.2. Diffusion Models

Diffusion models [51] represent a class of generative mod-

els that operate through a two-step process: first, they pro-

gressively add noise to observed data, effectively corrupting

it, and then they reverse this process to recover the original

data. This mechanism of gradual noise addition and subse-

quent denoising makes diffusion models highly effective for

generative tasks. The introduction of Denoising Diffusion

Probabilistic Models (DDPMs) [20] has been particularly

influential, as they establish a connection between diffu-

sion models and denoising score matching, which has gen-

erated significant interest in the field. The DDPM frame-

work has led to substantial advances in a variety of ap-

plications, including image generation [5, 21, 34, 47–49],

cross-modal generation [2, 14, 23, 25, 26], graph gener-

ation [24, 35, 56, 67], semantic segmentation [1, 4], and

object detection [9], among others. Notably, SR3 [49]

adapts the principles of DDPMs to the domain of image

super-resolution. Similarly, DiffusionDet [9] extends dif-

fusion models to the task of object detection, utilizing them

to recover bounding boxes from noisy data. Additionally,

Pix2Seq-D [10] employs diffusion models in conjunction

with analog bits to address the challenge of panoptic seg-

mentation, demonstrating the versatility of DDPMs in dif-

ferent generative tasks. Embodied dialogue localization

suffers from inherent ambiguity, making probabilistic gen-

erative methods suitable for this task. Since diffusion mod-

els are well-known for their ability to fit complex distribu-

tions, we apply DDPM to embodied dialogue localization.

2.3. Causal Inference

Causal inference [38] has emerged as a significant research

area within machine learning, distinguishing itself from

traditional methods by focusing on uncovering high-level

causal relationships from low-level data, rather than merely

identifying correlations between variables. In recent years,

various studies have applied causal learning techniques to

vision-and-language tasks [36, 44, 57, 58, 61, 73], including

image recognition [60, 62, 72], image captioning [29, 68],

and visual question answering [28, 36]. Notably, Lopez-

Paz et al. [31] introduced the observational causal discovery

method, which targets the causal relationships of objects in

images. Wang et al. utilize the normalized weighted geo-

metric mean (NWGM) [3] to approximate the softmax func-

tion and incorporate causal interventions to enhance visual

region classification. Niu et al. [36] proposed a counterfac-

tual inference framework designed to capture language bi-

ases as direct causal effects of questions on answers. In our

approach, we innovatively integrate causal inference with

diffusion, leveraging causal inference to eliminate ambigu-

ities in the diffusion condition and enhance the robustness

of the denoising process.

3. Preliminary
Diffusion models are a class of generative models for mod-

eling high-dimensional data distributions p (x). Unlike the

direct estimation of p (x), the diffusion model achieves

modeling by estimating a score function. The diffusion

model consists of a forward process and a backward pro-

cess. In the forward process, the model iteratively adds a

small amount of Gaussian noise at each time step, based on

a specific variance scheme β1, . . . , βT , until the image is

gradually transformed into an isotropic Gaussian noise im-

age. The process can be viewed as a Markov chain starting

from q (x0), where the noise is gradually accumulated at

each time step to progressively perturb the input data:

q (x1:T | x0) : =

T∏
t=1

q (xt | xt−1) ,

q (xt | xt−1) : = N
(
xt;

√
1− βtxt−1, βtI

)
,

(1)

where x0 denotes the initial data distribution x0 ∼ q (x),
and x1, . . . ,xT denotes a series of noise samples gener-

ated during T times of stepwise noise addition. To com-

pute xT directly from x0 and the fixed-value sequence

{βT ∈ (0, 1)}Tt=1, define αt = 1− βt, ᾱt =
∏T

i=1 αi, then

according to the parameter reorganization trick:

q (xt | x0) = N (
xt;

√
ᾱtx0, (1− ᾱt) I

)
. (2)

In the backward process, the model recovers the origi-

nal image by gradually removing the Gaussian noise added

in the forward process, which can also be represented as a

Markov chain:

p (xT :0 | xT ) =

T∏
t=1

p (xt | xt+1) ,

p (xt−1 | xt) : = N (xt−1;μθ (xt, t) ,
∑

θ (xt, t)) .

(3)

The model represents the denoising process through a pa-

rameterized mean function μθ (xt, t), which enables the

prediction of noise from xT at each time step t. The model

is trained by minimizing the mean square error (MSE) loss

between predicted noise and true noise:

L = E

[
‖εθ (xt, t)− ε‖22

]
. (4)

According to Song et al. [52], the above loss is equivalent

to a score matching method:

Epdata(x),pαt (xt|x0)

[
‖sθ (xt, t)−∇xt

log pαt
(xt | x0)‖22

]
.

(5)

4. Methods
Given a top-down map V ∈ R

H×W×3 and dialogs I ∈ R
L,

where H and W are the height and width of the image, and
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Locator: Where are you?
Observer: Sitting on a grey 
sofa in the bedroom.
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Figure 2. Overview of the proposed CGD model. We regress coordinates from randomly sampled Gaussian noise via diffusion, and

in order to reduce the bias caused by irrelevant information, we handle observable and unobservable confounders through back-door

adjustment and front-door adjustment, respectively, and use the unbiased features as guidance for the denoising process.

L is the length of tokens of the texts, the goal of embodied

dialog localization is to accurately predict the coordinates

of the observer’s final location Y through multiple rounds

of dialogs between the locator and the observer.

Since the diffusion model is capable of generating high-

quality samples, we apply it to embodied dialog localization

and propose the CGD method, as shown in Fig. 2. In this

section, we first describe the proposed diffusion-based lo-

calization in detail in Sec. 4.1, then introduce the specific

unified causal inference network in Sec. 4.2, and finally

show how to use the de-confounded features as guidance

in Sec. 4.3.

4.1. Diffusion Based Localization
Given the top-down map V and dialogs I, we first encode

them as tokens by pre-trained visual and textual encoders,

respectively, and then project them to the same dimension,

denoted as FV ∈ R
N×D and FI ∈ R

L×D, where N is the

image token length, i.e. H ×W . Next, the coordinates are

progressively regressed through the forward and backward

processes of the diffusion model, as outlined in Sec. 3.

We first sample the time step t uniformly from

{0, . . . , T − 1}, where T denotes the maximum range of

time steps. We treat the ground truth two-dimensional coor-

dinates y as y0 in the diffusion model. At the sampled time

step t we add independent Gaussian noise ε ∼ N (0, I) to

y0 to obtain the perturbed noise coordinates yt:

yt =
√
ᾱty0 + ε

√
1− ᾱt. (6)

After obtaining the noise coordinates yt, we encode

them into tokens using an MLP, denoted as Fyt
∈ R

1×D.

The visual token FV and the textual token FI are then con-

catenated to form the condition C ∈ R
(N+L)×D:

C = concat (FV ,FI) . (7)

We feed the condition C and the noise token Fyt
to-

gether into a standard Transformer. The noise token Fyt

is then extracted from the output of the Transformer and

converted into the predicted noise εθ through a regression

head. The model is gradually optimized during training by

minimizing the mean squared error (MSE) loss between the

predicted noise and the ground truth noise:

Ldiff = E

[
‖ε− εθ (Fyt

, t,C)‖22
]
. (8)

It should be noted that we employ Adaptive Layer

Norm [41] to incorporate the time step t as a conditioning

input to the model.

The diffusion model can enhance localization accuracy

through multiple iterations, but its performance is heavily

influenced by the condition C. However, due to the pres-

ence of confounders in condition C [15, 50], the model may

learn spurious correlations, which may produce wrong gra-

dients and seriously affect the generalization performance.

We will discuss the elimination of these confounders in the

following subsection.

4.2. Unified Causal Inference Network
Causal inference seeks to uncover high-level causal rela-

tionships from low-level data. As illustrated in Fig. 3, the

model receives inputs including top-down maps V and dia-

logue sequences I, with the objective of predicting the coor-

dinate Y. Denoting the learned features as F, conventional
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Figure 3. Illustration of the causal graph. I, V and Y denote

the visual inputs, language inputs, and coordinate prediction.

EDL methods only learn {I,V} → F → Y, which learn

the ambiguous statistics-based association p(Y | I,V), but

ignore the spurious association brought by a series of con-

founders Z . To strengthen the robustness of the denois-

ing process and the generalization ability of the model, our

goal is to remove both visual confounders ZV and textual

confounders ZI in the denoising condition C using causal

inference. Specifically, we introduce a unified causal infer-

ence network consisting of both front-door adjustment and

back-door adjustment to handle observable and unobserv-

able confounders, respectively.

Observable Confounders. For simplicity, we denote the

inputs uniformly as X. According to Bayes’ theorem,

the prediction without considering confounders can be ex-

pressed as:

p (Y | X) =
∑
z∈Z

p (Y | X, z) p (z | X) (9)

where p (z | X) can cause the model to learn spurious cor-

relations. For example, since most sofas are gray and are

placed in living rooms, the model will easily learn a spuri-

ous association between “gray sofa” and “living room”. Do-

operator [38] provides a way to eliminate observable con-

founders by cutting off the backdoor-link between Z and

X. This process can be modeled using a neural network

f (X, z), which can be expressed as follows:

p (Y | do (X)) =
∑
z∈Z

p (Y | do (X) , z) p (z | do (X)) ,

≈
∑
z∈Z

p (Y | X, z) p (z) ,

= Ez [f (X, z)] .
(10)

According to the additive property of expectations,

f (X, z) can be expressed as fx (X) + fz (z), which al-

lows us to represent the causal relationship as fx (X) +
Ez [fz (z)]. Next, following previous methods [30, 59],

Ez [fz (z)] can be calculated using statistical techniques:

Ez [fz (z)] =
∑
i

|zi|∑
j |zj |

fz (zi) , (11)

where |zi| denotes the count of instances of z belonging to

the i-th category in the confounder dictionary.

We handle text and visual features independently to cre-

ate the confounder dictionary. For text features, we extract

spatial directions and key landmark words from conversa-

tions, then compute the average feature based on the like-

lihood of each word’s occurrence. For visual features, we

use the pre-trained VQA model BLIP [27] to obtain each

room type by asking “What kind of room is this?” and then

calculating the average feature for each room type. The de-

confounded features FV
o and FI

o are derived as follows:

FV
o = LN [φv [Ez [f (FV , z)]]] ,

FI
o = LN [φi [Ez [f (FI , z)]]] ,

(12)

where φv and φi denote learnable full-connection layers.

Unobservable Confounders. In the previous section, we

used back-door adjustment to handle bias. However, this

method requires us to identify confounders beforehand.

However, there are unobservable confounders that can’t be

directly modeled, which also contribute to bias. To address

this, front-door adjustment [39] introduces an extra media-

tor M between X and Y, which creates a front-door path

X → M → Y to transmit knowledge:

p (Y | do (X)) =
∑

m∈M
p (m | do (X)) p (Y | do (m)) ,

=
∑

m∈M
p (m | X)

∑
x∈X

p (x) p (Y | m,x) ,

= ExEm|X [p (Y | m,x)] ,
(13)

where m denotes the selected knowledge from mediator

M.

Given the sensitivity of the EDL task to regions, we

design M as a feature selector based on VQ-VAE [54].

Specifically, as both the image and text are pre-encoded into

tokens, we utilize a VQ-VAE to project these tokens into the

latent space individually, effectively performing an implicit

clustering of features [69, 74]. Through the learned VQ-

VAE, V and I are represented by corresponding discrete

encoding sequences. The prior distribution for the discrete

code follows a categorical distribution, which depends on

the other codes within the feature map. Subsequently, the

VQ-VAE model can be employed to extract key features

from X, which are then used to predict the coordinates Y.

We use m̄ to denote the in-sampling features obtained

by VQ-VAE acting on the current input, and x̄ to mean the

cross-sampling features randomly sampled from the code-

book of VQ-VAE. Based on the linear mapping model,

Eq. (13) becomes Em|X [m̄] + Ex [x̄]. Following previ-

ous works [30, 68], two embedding functions are used to

transmit input X into two query sets Q1 = q1 (X) and
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Q2 = q2 (X). The front-door adjustment is then approx-

imated as follows:

Ex [x̄] ≈
∑
i

exp
(Q1x̄

T
i

)
∑

j exp
(Q1x̄T

j

) x̄i,

Em|X [m̄] ≈
∑
i

exp
(Q2m̄

T
i

)
∑

j exp
(Q2m̄T

j

)m̄i,

F (X, x̄) = Ex [x̄] + Em|X [m̄] .

(14)

Denoting the quantized features from VQ-VAE as Fq
V

and Fq
I . The final de-confounded features through back-

door adjustment and front-door adjustment can be ex-

pressed as:

F′
V = F (

FV
o ,F

q
V

)
,

F′
I = F (

FI
o,F

q
I

)
.

(15)

4.3. Causality Guidance
To simplify notation, we represent the causal inference pro-

cess from the previous section as do (C). Classifier-free

guidance [19] leverages implicit classifier gradients to ad-

just the gradient direction in diffusion model propagation.

Inspired by this approach, implicit causal intervention can

be formulated as pi (do (C) | yt) ∝ p (yt | do (C)) /p (yt)
to mitigate potential adversarial gradient behavior during

causal inference. As discussed in Sec. 3, the diffusion pro-

cess conceptionally aligns with score matching. By obtain-

ing accurate scores εθ (yt | do (C)) and εθ (yt), the gradi-

ent of this implicit intervention becomes:

∇yt
log pi (do (C) | yt)

∝ − 1

σλ
[εθ (yt | do (C))− εθ (yt,C)] .

(16)

Guidance using this implicit intervention updates the score

estimate as:

ε̃θ (yt, do (C)) = (1 + ω) εθ (yt, do (C))− ωεθ (yt,C) .
(17)

We train both the causal and non-causal models jointly by

randomly setting C to the disambiguation condition do (C).

4.4. Training & Inference
Training. The loss calculation for VQ-VAE is given by the

following equation:

Lvqvae =
∥∥∥sg [FV,I ]− Fq

V,I

∥∥∥2
2
+ β

∥∥∥FV,I − sg
[
Fq

V,I

]∥∥∥2
2
,

(18)

where sg represents the stop-gradient operator, defined as

an identity operation during the forward computation pass,

but with zero partial derivatives, effectively blocking gradi-

ent flow during backpropagation. β denotes a weight co-

efficient. Subsequently, the total loss can be calculated as:

Ltotal = γ1Ldiff + γ2Lvqvae, (19)

Figure 4. Ablation experiments on the number of diffusion steps.

where γ1 and γ2 are weight coefficients.

Inference. During inference, Since the data can be effec-

tively approximated as a Gaussian distribution after the for-

ward pass, we can obtain random initial coordinates yT by

sampling noise from a unit Gaussian. In the backward pass,

we obtain the noise-free coordinates y0 by removing the

noise predicted by the model from yT :

yt−1 =
1√
αt

(
yt − 1− αt

1− ᾱt
ε̃θ (yt | t, c)

)
+ σtδ, (20)

where δ ∼ N (0, I).

It is worth noting that in our experiments, we found that

generating the initial coordinates yT solely through random

sampling from the unit Gaussian can result in performance

fluctuations. Since the entire denoising process aims to fit

the original distribution, random sampling is akin to sam-

pling from the original distribution, while our objective is

to maximize the likelihood of the predicted coordinates.

Therefore, we adopt a sampling method based on kernel

density estimation (KDE): sample multiple coordinates si-

multaneously, fit the kernel density distribution, and select

the coordinate with the highest probability likelihood as the

final predicted coordinate. For details on this ablation ex-

periment, see Sec. 5.3.

5. Experiments

5.1. Setting
Datasets. To evaluate our method, we conducted exper-

iments on the WAY dataset. Consistent with prior ap-

proaches [18, 71], we employ a floor-level evaluation,

which assumes knowledge of the ground-truth floor in the

environment. We use the training split of the dataset

for model training and the valSeen split for validation,

while performance on the valUnseen split demonstrates the

model’s generalization to novel scenarios.

Metrics. Following the methodologies of DiaLoc [71] and

LingUNet [18], we use geodesic distance as our evaluation

metric. Specifically, we project the predicted coordinate

y0 to the nearest node G0 and measure its distance to the
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Figure 5. Ablation experiments on the guidance strength.

ground-truth node GT , calculated as:

d = ‖G0 −GT ‖2 . (21)

We report the accuracy of d in the valSeen and valUn-

Seen splits at thresholds of 0 meters and 5 meters. This

metric provides a clear and quantitative assessment of our

model’s localization performance in both familiar and unfa-

miliar environments.

Multi-shot setting. It is worth noting that there are many

different positioning applications in reality. Therefore, sim-

ilar to previous SOTA DiaLoc [71], we also apply our model

to the multi-shot setting.

In the multi-shot setting, N rounds of dialogue are in-

put to the model individually. Each time, the model pro-

cesses language input from only a single round, rather than

the entire dialogue sequence. This approach not only sim-

ulates real-world application scenarios but also aligns more

closely with human cognitive processing habits. Specifi-

cally, the text feature FI and vision feature FV are ex-

panded by an additional dimension to represent the num-

ber of dialogue rounds. During both training and inference,

only the features from one dialogue round are fed into CGD

at a time. For loss calculation, we apply the single-shot loss

to each prediction independently.

Implementation Details. During training, the top-down

map V is resized to 224 × 224 pixels, and we use CLIP-

VIT [46], pretrained on ImageNet-21k [12] with a patch

size of 16, as the visual backbone. To mitigate overfitting,

we employ data augmentation techniques, including color

jittering, random rotations up to 180◦, and random cropping

of 5%. The text encoder, BERT [13], remains frozen during

training to preserve its pretrained language representations.

All experiments were conducted on eight NVIDIA GeForce

GTX 2080 Ti GPUs with a batch size of 30. We used the

AdamW [32] optimizer with a learning rate of 3×10−5 and

a weight decay rate of 1× 10−4.

5.2. Benchmark Evaluation
We compare our method with several existing approaches.

As shown in Tab. 1, in the single-shot setting, our

method achieves significant improvements of 9.7% on

valSeen valUnseen

Acc0 Acc5 Acc0 Acc5

Single-shot
LingUNet 19.87 59.29 6.16 33.33

DiaLoc† 25.64 66.02 7.02 40.41

CGD(ours) 30.21 76.34 16.72 69.56

Multi-shot
LingUNet-i 4.32 24.16 3.25 20.21

LingUNet-e 14.47 46.15 5.31 36.30

DiaLoc-i 18.43 57.18 6.42 37.89

DiaLoc-e 18.36 60.00 8.44 47.15

CGD(ours) 26.25 71.23 11.76 62.88

Table 1. Evaluations on WAY dataset under single-shot and multi-

shot scenarios. DiaLoc† uses BLIP [27] to generate auxiliary loca-

tion captions, DiaLoc-i and DiaLoc-e use Chatgpt to expand text

data.

Id Diff BDA FDA
valSeen valUnseen

Acc0 Acc5 Acc0 Acc5

1 � � � 16.51 48.64 4.17 26.32

2 � � � 24.12 62.24 8.94 42.62

3 � � � 17.46 50.33 4.31 29.63

4 � � � 19.09 54.45 5.02 32.66

5 � � � 25.66 63.21 10.11 49.23

6 � � � 26.33 64.27 12.98 58.59

7 � � � 21.15 57.98 8.67 42.17

8 � � � 30.21 76.34 16.72 69.56

Table 2. Ablation experiments of key components in CGD. A sim-

ple MLP is used as regression head to ablate the effect of diffusion.

Acc0@valUnseen and 29.15% on Acc5@valUnseen over

the previous state-of-the-art method DiaLoc [71]. Addition-

ally, in the multi-shot setting, our method demonstrates sim-

ilar advancements, surpassing the state-of-the-art by 3.32%

on Acc0@valUnseen and 15.73% on Acc5@valUnseen. It

should be noted that compared with DiaLoc, our method

does not generate additional data using BLIP or Chatgpt.

These substantial gains underscore the effectiveness of our

method in both familiar and novel environments, highlight-

ing its robustness and ability to generalize across diverse

evaluation settings.

5.3. Ablation Studies
To evaluate the design of each component, we conduct ex-

tensive ablation experiments, all of which use 100 diffusion

steps and 0.25 guidance strength as the baseline.

Effect of Diffusion & Causal Inference. Fig. 5 illus-

trates the impact of the proposed modules: back-door ad-

justment (BDA), front-door adjustment (FDA), and diffu-

sion models on CGD. To isolate the specific effect of the

diffusion model, we use a simple MLP for direct coordi-

nate regression. Compared to the baseline (#1), using dif-

fusion alone or applying either BDA or FDA individually

yields performance improvements. The results indicate that
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valUnseen 2004 Step 25 Step 50 Step 75 Step 100

valSeen 944 Step 25 Step 50 Step 75 Step 100

Figure 6. Visualization of KDE as heatmap. Illustrating how the model progressively denoises from random Gaussian noise to accurately

predict coordinates as the steps increase.

Num of Kernals
valSeen valUnseen

Acc0 Acc5 Acc0 Acc5

0 25.12 61.47 11.10 51.89

20 26.88 63.42 12.62 54.13

50 27.16 66.43 13.47 58.10

80 28.32 69.41 14.87 62.43

100 30.21 76.34 16.72 69.56

Table 3. Ablation experiments on different number of kernels.

regressing coordinates through a diffusion-based approach

significantly enhances acc0m performance, likely due to

diffusion’s ability to effectively model complex data dis-

tributions. The combined application of all three modules

further improves performance, particularly when BDA and

FDA are used together. This finding supports our assump-

tion about the presence of both observable and unobservable

confounders, affirming that integrating back-door and front-

door adjustments is essential for comprehensively address-

ing dataset bias and strengthening the model’s robustness

and generalization. Additionally, in Fig. 4, we show the ef-

fect of varying diffusion steps on overall performance.

Effect of Causality Guidance. Fig. 5 illustrates the effect

of varying causality guidance strengths on performance.

The results indicate that adjusting the guidance strength co-

efficient ω allows for flexible control over the influence of

causal reasoning on the diffusion model. Our analysis sug-

gests that a coefficient ω that is too large may hinder the

model’s ability to learn the original features, while a co-

efficient ω that is too small reduces the impact of causal

reasoning.

5.4. Visualization
Since we use kernel density estimation, we can visualize

the results as heatmap by calculating the distance between

Gaussian kernels and each original image grid, as shown in

Fig. 6. We ablated the impact of different numbers of ker-

nels on the performance, as shown in Tab. 3. And we show

the Cumulative Matching Characteristic (CMC) curves of

Figure 7. Visualization of CMC curves. We depict the CMC

curves for both CGD and DiaLoc for single-shot and multi-shot

settings. CGD consistently outperforms the baseline.

CGD and DiaLoc in Fig. 7. CGD outperforms the base-

line in both single-shot and multi-shot configurations. Es-

pecially the outstanding performance in valUnseen shows

that our method achieves better performance in novel envi-

ronments.

6. Conclusion

In this paper, we propose CGD, a novel method leveraging

causality guided diffusion to enhance localization accuracy

while mitigating dataset bias. Unlike prior heatmap-based

methods that rely on resolution, CGD introduces controlled

noise to original coordinates and reverses this process to

reconstruct the original signal. Through causal learning,

CGD effectively addresses both observable and unobserv-

able confounding factors via front-door and back-door in-

terventions, respectively. Comprehensive experiments on

the WAY dataset demonstrate that our approach consistently

outperforms state-of-the-art methods, underscoring its ef-

fectiveness and robustness. While CGD demonstrates ex-

cellent localization accuracy and robustness, its inference

speed remains relatively slow. Future efforts will aim to en-

hance the speed by leveraging advanced diffusion models.
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