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Abstract
Hyperbolic geometry have shown significant potential in modeling

complex structured data, particularly those with underlying tree-

like and hierarchical structures. Despite the impressive performance

of various hyperbolic neural networks across numerous domains,

research on adapting the Transformer to hyperbolic space remains

limited. Previous attempts have mainly focused on modifying self-

attention modules in the Transformer. However, these efforts have

fallen short of developing a complete hyperbolic Transformer. This

stems primarily from: (i) the absence of well-defined modules in

hyperbolic space, including linear transformation layers, Layer-

Norm layers, activation functions, dropout operations, etc. (ii) the

quadratic time complexity of the existing hyperbolic self-attention

module w.r.t the number of input tokens, which hinders its scalabil-

ity. To address these challenges, we propose, Hypformer, a novel
hyperbolic Transformer based on the Lorentz model of hyperbolic

geometry. In Hypformer, we introduce two foundational blocks

that define the essential modules of the Transformer in hyperbolic

space. Furthermore, we develop a linear self-attention mechanism

in hyperbolic space, enabling hyperbolic Transformer to process

billion-scale graph data and long-sequence inputs for the first time.

Our experimental results confirm the effectiveness and efficiency of

Hypformer across various datasets, demonstrating its potential as

an effective and scalable solution for large-scale data representation

and large models.

CCS Concepts
•Computingmethodologies→Machine learning;Knowledge
representation and reasoning; •Mathematics of computing
→ Geometric topology.
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Figure 1: In a variety of real-world scenes, when we classify
instances in a dataset (e.g., classifying the node in anArxiv pa-
per), we can group them into larger groups (e.g., Physics, Com-
puter Science) that contain smaller subgroups (e.g., {Quantum
Computing, Geometry}, {Database, Artificial Intelligence}),
which may also contain even smaller sub-subgroups. The
relationships between these various levels of groups and
subgroups can be represented by dendrograms, which are
tree-like structures that reveal the underlying hierarchies in
the data.
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1 Introduction
In many real-world scenarios, data frequently exhibit a hierarchical

or tree-like structure, either implicitly or explicitly [32, 49, 95]. This

is evident in complex networks [8, 38, 78, 94], the semantics of

words in natural language processing [50, 51, 63], and conceptual

hierarchies in vision tasks [15, 32]. As illustrated in Figure 1, such
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data can be organized into large and abstract groups that encom-

pass small and specific subgroups, which can further be subdivided

into even smaller and more specific sub-subgroups, and so on. The

relationships between these groups and subgroups can be effec-

tively approximated by tree-like structures [13]. This hierarchical

representation mirrors human cognitive processes [14, 28], making

it an intuitive approach to data representation.

Recent initiatives have explored the use of hyperbolic learning

spaces to encode complex non-Euclidean data, achieving impres-

sive performance in representing tree-like data [8, 24, 43, 50, 51,

62, 76, 79, 80, 83]. This success is attributed to the unique prop-

erty of hyperbolic space, which expands exponentially compared

to the polynomial expansion of Euclidean spaces. This property

aligns hyperbolic space with the metric of trees, making it particu-

larly suitable for representing tree-like or hierarchically structured

data [38]. Despite the growing interest in hyperbolic representa-

tion and deep learning, the Transformer [1, 65, 70], a cornerstone

model in the various domains, was seldom explored within the

realm of hyperbolic space. Despite preliminary attempts in hyper-

bolic Transformers [9, 26, 61], numerous challenges remain to be

addressed.

Challenge (1): Insufficient definitions for operations in the
hyperbolic Transformer. Priorworks of HAN [26] andHNN++ [61]

primarily concentrated on the self-attention module, yet they fell

short of constructing a comprehensive Transformer architecture,

lacking basic components such as LayerNorm layer and positional

encoding layer. This is primarily due to the inadequate definition

of fundamental operations in previous studies.

Challenge (2): Inefficient and ineffective definitions for
linear transformation in the hyperbolic Transformer. While

some techniques [8, 24] employ the tangent space to achieve the

linear transformation, they often necessitate frequent logarithmic

and exponential mappings, heavily dependent on the tangent space

at the origin. This leads to an increased computational load, ac-

cumulation of mapping errors, and unstable training procedures.

Although Chen et al. [9] introduced a fully Lorentz linear trans-

formation in hyperbolic space, it is constrained by its immutable

curvature and normalization term.

Challenge (3): Absence of a linear attention mechanism
in hyperbolic Transformer. The hyperbolic self-attention mech-

anisms proposed by Gulcehre et al. [26], Shimizu et al. [61], and

Chen et al. [9] exhibit quadratic time complexity, posing a signifi-

cant challenge when handling long-sequence input and large-scale

graph data.

Proposed work: In this work, we propose an efficient hyper-

bolic Transformer, referred to as Hypformer. In particular, to ad-

dress Challenges (1) and (2), we propose two foundational blocks,

Hyperbolic Transformation with Curvatures (HTC) and Hyperbolic

Readjustment and Refinement with Curvatures (HRC), to build all

essential modules in the hyperbolic Transformer. HTC and HRC

are built on the Lorentz model of hyperbolic geometry, working

directly on the hyperbolic space without frequently mapping. HTC

defines the linear transformation and facilitates mapping from a

hyperbolic space with one curvature to another different curvature

while preserving the relative distance. HRC further enables the

definition of basic operations commonly used in the Transformer,

such as LayerNorm layer, activation function, dropout, and con-

catenation, within a hyperbolic context. To tackle Challenge (3),

we introduce a self-attention mechanism in Hypformer with linear

complexity, enabling efficient large-scale data processing.

To validate the effectiveness of the proposed methodology, we

have undertaken extensive experiments across a diverse range of

tasks. These include graph analysis [40, 42, 77, 85, 89], text classi-

fication [90, 91], and image classification [17, 72]. The empirical

evidence gathered from these experiments indicates that the pro-

posed method significantly reduces the GPU computation cost

by a factor of 10 and concurrently halves the training time com-

pared with the existing hyperbolic softmax attention. Furthermore,

the proposed method consistently surpasses the performance of

competitive baselines, yielding substantial improvements on both

tree-like and non-tree-like datasets.

Contributions. In summary, this study offers the following con-

tributions: First, we introduce two fundamental hyperbolic blocks,

HTC and HRC. Building upon these, we have formulated funda-

mental modules for linear transformation, LayerNorm, activation

function, dropout, and concatenation operations within a hyper-

bolic context. Second, we propose the first hyperbolic linear at-

tention mechanism, which enables the hyperbolic Transformer to

be scalable and efficient. Based on the above efforts, we construct

a Hypformer
1
, the first comprehensive and efficient hyperbolic

Transformer model fully designed to operate within hyperbolic

space. Last, we extend the hyperbolic model to handle billion-level

graph data for the first time, laying a crucial foundation for the

application of big data and large-scale models.

2 Related Work
2.1 Hyperbolic Neural Networks
Recent studies have demonstrated that hyperbolic space is particu-

larly adept at capturing the hierarchical and tree-like structures [23,

25, 39, 41, 50, 51, 53, 63, 83]. Building on hyperbolic space, a variety

of hyperbolic neural networks, HNN [24], HAN [26], HNN++ [61],

HGCN [8], HGNN [43], F-HNN [9], Poincaré Resnet [64], HGTM [91]

have been developed to leverage the advantages of the hyperbolic

geometry. These neural networks have obtained an impressive

performance in domains like computer vision [2, 29, 32], natural

language processing [4, 7, 37, 47], recommender systems [11, 62, 68,

69, 76, 80], graph learning [3, 8, 41, 43, 78, 81, 92] and so on [41, 75].

2.2 Transformer and Hyperbolic Transformer
Introduced by Vaswani et al. [65], Transformermodels have brought

about a paradigm shift in the field of artificial intelligence. Trans-

former [5, 16, 18, 65] has made a tremendous impact in many

fields, such as language understanding [5, 16, 54], image process-

ing [6, 52] and graph learning [33, 55]. A well-known concern with

self-attention is the quadratic time complexity, which can hinder

model scalability in many settings. Efficient self-attention models

are crucial in applications that model long sequences [27, 31, 36, 59].

Despite these advancements, existing Transformer architectures

predominantly operate within the Euclidean domain. There have

been limited attempts to extend these models to hyperbolic and

1
Code is available at https://github.com/Graph-and-Geometric-Learning/hyperbolic-

transformer

https://github.com/Graph-and-Geometric-Learning/hyperbolic-transformer
https://github.com/Graph-and-Geometric-Learning/hyperbolic-transformer
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other non-Euclidean spaces. Gulcehre et al. [26] proposed hyper-

bolic attention networks, which replace the dot-product between

the query and key in self-attention with a function of negative

hyperbolic distance. They then utilize the Einstein midpoint to

compute the attentive output with value. Similarly, Chen et al. [9]

and Shimizu et al. [61] adopt similar strategies that result in the

attentive output with key being based on the Lorentzian midpoint

and gyromidpoint, respectively.
2
However, these methods exhibit

quadratic time complexity, limiting their scalability. Besides, they

focused more on the self-attention module and did not define the

essential modules, like LayerNorm in Transformer. Recently, Cho

et al. [12] proposed a fully Product-Stereographic Transformer, pre-

senting a kernelized approach to non-Euclidean attention, which

is linear time complexity. However, this method heavily relies on

the tangent space, necessitating frequent mappings between the

tangent space and manifolds. Ermolov et al. [19] proposed mapping

the last layer features obtained from a Euclidean Transformer to

hyperbolic space, which essentially does not establish a true Hy-

perbolic Transformer. Our work aims to address these challenges

and further the development of hyperbolic Transformers.

3 Preliminaries
In this section, we introduce concepts related to Lorentz model of

hyperbolic geometry and self-attention module briefly.

3.1 Lorentz Model of Hyperbolic Geometry
There are several isometric models [23, 26, 50, 51, 56, 63] of hyper-

bolic geometry that have been employed in prior research. In this

study, we choose the Lorentz model as the foundational framework

due to the numerical stability it offers [46, 51]. Also, the proposed

Hypformer can be easily adapted to other hyperbolic models, as

they are isometrically equivalent.

Lorentz Model. An 𝑛-dimensional Lorentz model with negative

constant curvature 𝜅 (𝜅 < 0) is a Riemannian manifold denoted

by L𝑛,𝜅 . The corresponding Riemannian metric is given by 𝔤𝜅 =

diag(1/𝑘, 1, · · · , 1). Each point in L𝑛,𝜅 can be represented as x =[
𝑥𝑡
x𝑠

]
where x ∈ R𝑛+1, 𝑥𝑡 ∈ R and x𝑠 ∈ R𝑛 . The set of points,

L𝑛,𝑘 , that constitute the manifold are defined as

L𝑛,𝜅 :=
{
x ∈ R𝑛+1 | ⟨x, x⟩L = 1/𝜅, 𝑥𝑡 > 0

}
. (1)

Here, ⟨x, y⟩L = −𝑥𝑡𝑦𝑡 + x⊤𝑠 y𝑠 = x⊤𝔤𝜅y represents the Lorentzian

inner product. Lorentz model, also known as the hyperboloid model,

is an upper hyper-surface in an (𝑛 + 1) dimensional Minkowski

space with the origin point (
√︁
−1/𝜅, 0, · · · , 0). Lorentz model has its

roots in the theory of special relativity [57] and employs terminol-

ogy borrowed from this field. The hyperboloid’s axis of symmetry,

represented by the 0-th element 𝑥𝑡 , is referred to as the time-like

dimension, while all other axes x𝑠 are called space-like dimensions.

Tangent Space of Lorentz Model. Given x ∈ L𝑛,𝜅 , the tan-
gent space TxL𝑛,𝜅 :=

{
u ∈ R𝑛+1 | ⟨u, x⟩L = 0

}
is the orthogonal

space of L𝑛,𝜅 at x with respect to the Lorentzian inner product.
3
To

2
In theory, the Einsteinmidpoint, Lorentzian centroid, and gyromidpoint are equivalent

midpoint operations projected onto each manifold [61].

3
The orthogonality condition ⟨u, x⟩L = 0 ensures that u lies in the tangent space,

preserving the manifold’s geometry.
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Figure 2: Illustration of hyperbolic softmax attention defined
on Lorentz model. Unlike the attention mechanism in Eu-
clidean space, this hyperbolic attention obtains the similarity
between Q and K by a negative hyperbolic distance defined
in Equation (5). The time complexity is quadratic w.r.t the
number of input tokens.

achieve the mapping from the Lorentz model to the tangent space

at x, we can use the logarithmic map, log
𝜅
x : L𝑛,𝜅 → TxL𝑛,𝜅 . The

exponential map defines the inverse process, exp
𝜅
x : TxL𝑛,𝜅 → L𝑛,𝜅 .

For the details about exponential, logarithmic maps and the relevant

distance functions, please refer to Appendix A.

3.2 Self-Attention Module
We first examine the general form of self-attention in Euclidean

Transformers. Given the input of N tokens X ∈ R𝑁×𝑑
, within each

head, self-attention can be expressed as:

Q = XWQ,K = XWK,V = XWV,

Z𝑖 =
𝑁∑︁
𝑗=1

Sim

(
Q𝑖 ,K𝑗

)∑𝑁
𝑗=1 Sim

(
Q𝑖 ,K𝑗

) V𝑗 , (2)

where WQ,WK,WV ∈ R𝑑×𝑑 ′ are projection matrices and Sim(·, ·)
denotes the similarity function. Modern Euclidean Transformers

primarily use Softmax attention [65] where similarity is calculated

as Sim(Q𝑖 ,K𝑗 ) = exp

(
Q𝑖K𝑇𝑗 /

√
𝑑′
)
. In this scenario, the attention

map is derived by computing the similarity between all query-key

pairs, which results in a computational complexity of O
(
𝑁 2

)
.

The concept of hyperbolic self-attention, as defined by previous

works [9, 26, 61], bears a similar idea to Equation (2). Figure 2

presents an illustration for this hyperbolic operation on Lorentz

model. It can be expressed as follows:

Q = X ⊗𝜅 WQ,K = X ⊗𝜅 WK,V = X ⊗𝜅 WV,

Z𝑖 =
𝑁∑︁
𝑗=1

Sim
𝜅
(
Q𝑖 ,K𝑗

)∑𝑁
𝑗=1 Sim

𝜅
(
Q𝑖 ,K𝑗

) ⊙𝜅 V𝑗 .
(3)

In this equation, ⊗𝜅 denotes the hyperbolic linear transformation,

which can be computed using Equations (6) and (7) given in the

following section. The symbol ⊙𝜅 represents the weighted sum
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in hyperbolic space. Let Att𝑖 denotes the 𝑖-th row of the attention

matrix in the Lorentz model, it can be computed by Lorentzian

midpoint [39]:

Att𝑖 ⊙𝜅 V𝑗 :=

∑𝑁
𝑗=1 𝛼𝑖 𝑗V𝑗√︂

|𝜅 |
���∥∑𝑁

𝑘=1
𝛼𝑖𝑘V𝑘 ∥L

��� . (4)

The function Sim
𝜅 (·, ·) denotes the similarity function defined by

the hyperbolic distance 𝑑H [9, 26, 61]
4
or the tangent inner prod-

uct [44]. Specifically, Chen et al. [9] defined the similarity function

as:

Sim
𝜅 (Q𝑖 ,K𝑗 ) = exp

(
−𝑑2H (Q𝑖 ,K𝑗 )/

√
𝑑′
)
. (5)

Both Gulcehre et al. [26] and Shimizu et al. [61] utilized similar

forms of this function. They all employ negative distance to define

similarity, and each has a computational complexity of O
(
𝑁 2

)
.

3.3 Lorentz Transformation
Lorentz Tangent Space Transformation. Previous works [8, 24,
43, 82, 93] mainly define hyperbolic linear transformations by the

tangent space method, termed as LTT . Given the Lorentz embed-

ding vector x and operation function 𝑓 , the tangent space method

maps x to the tangent space at a local reference point by the log-

arithmic map. Then, the transformation operation 𝑓 is applied in

this tangent space. Finally, the resulting vector is mapped back to

the Lorentz model using the exponential mapping, that is
5
,

LTT (x; 𝑓 , 𝜅1, 𝜅2) := exp
𝜅1
o (𝑓 (log𝜅2o (x))), (6)

where o is the local reference point (generally the origin point),

and the curvatures 𝜅1 and 𝜅2 could be different since they share

the same tangent space. Using this method, previous works define

the linear transformation, neighbor’s aggregation, dropout, and

non-linear activation [8, 43].

Limitations. While this method is intuitive, it has notable limi-

tations. First, parallel computation is feasible if the same reference

point is used for the entire embedding. However, this approach

can lead to significant mapping errors for distant points due to the

point-specific nature of the tangent space. Conversely, using local-

specific points enhances accuracy but increases computational load

by requiring separate mappings. Second, frequent use of hyperbolic
functions like cosh or cosh

−1
can destabilize learning. While the

clamp function can mitigate this issue, its use may compromise

computational precision.

Fully Lorentz Transformation. To overcome the above limita-

tions, Chen et al. [9] defined an alternative Lorentz transformation

without using tangent space, termed as LTF :

LTF (x; 𝑓 ,W, 𝜅) :=
(√︃

∥ 𝑓 (Wx, v)∥2 − 1/𝜅, 𝑓 (Wx, v)
)𝑇

, (7)

which involves a function 𝑓 that operates on vectors v ∈ R𝑛+1

and W ∈ R𝑚×(𝑛+1)
, 𝑓 (Wx, v) = 𝜆𝜎 (v⊤x+𝑏′)

∥Wℎ (x)+b∥ (Wℎ(x) + b). Here, 𝜎
is the sigmoid function, b and 𝑏′ are bias terms, 𝜆 > 0 controls the

4
Here we use subscript H other than L since it is not limited to Lorentz mdoel.

5
Some studies [82, 93] proposed an improved version of tangential linear transfor-

mations only on the space-like dimension and then incorporated a zero value to the

transformed results, in order to respect the constraints of the tangent space at the

origin. They have a similar formula as Equation (6), which we omit for brevity.

scaling range, and ℎ is the activation function. Depending on the

type of function, it can perform different operations. For instance,

for dropout, the operation function is 𝑓 (Wx, v) = W dropout (x).
Limitations. There are several limitations to this method. First,

the curvature is unchangeable. Although it appears that LTF pro-

vides a way to directly modify 𝜅 in Equation (7), this modification

results in a loss of previously learned information, introducing dis-

tortions. Direct alteration of curvature cannot guarantee the preser-
vation of relative distance relationships within the learned embedding.
The derivation is shown as follows:

Let x′ = 𝑓 (Wx, v), and 𝑔(x′) =
(√︁

∥x′∥2 − 1/𝜅′, x′
)
. Then:

𝑑𝜅
′

L
(
𝑔(x′), 𝑔(y′)

)
=
√︁
1/|𝜅 |′arcosh

(
𝜅′⟨𝑔(x′), 𝑔(y′)⟩L

)
=
√︁
1/|𝜅 |′arcosh

(
𝜅′

(
𝛼time + x′𝑇 y′

))
,

(8)

where 𝛼time =

√︃(
∥x′∥2 − 1/𝜅′

) (
∥y′∥2 − 1/𝜅′

)
.

It can be observed that changing 𝜅 results in a non-linear trans-

formation of the Lorentz distance 𝑑𝜅
′

L . Consequently, the relative

distances between data points may not be preserved as they were

in the original 𝜅 Lorentz space. Even small changes in the param-

eter 𝜅 can significantly affect the resulting distances, potentially

distorting the previously learned hierarchical structure.

Second, the requirement for the W matrix and normalization

term pose another challenge. In [9], W is applied to both time-

like and space-like dimensions , in order to achieve Lorentz boosts

and rotations simultaneously. However, its introduction constrains

the usage of certain functions. For instance, dropout, activation

operation do not necessarily interact with the matrixW. Taking the

ReLU activation function as an example, it only requires filtering out

negative values without needing matrix multiplication in Euclidean

space. Additionally, Chen et al. [9] introduced a normalization term

that constrains the value within a limited range, thereby limiting

the expressiveness of the transformation.

Lastly, some basic operations, such as LayerNorm and Concate-

nation, cannot be achieved within this definition.

4 Method
The proposed method is designed to overcome the limitations of

the existing attempts in hyperbolic Transformer, as outlined in

the Section 1. To address Challenges (1) and (2), we designed two

foundational blocks, namely HTC and HRC in Section 4.1, and

4.2, respectively. To overcome Challenge (3), we developed a hy-

perbolic linear attention module in Section 4.3, which equips the

Transformer with linear time complexity.

4.1 Hyperbolic Transformation with
Curvatures (HTC)

Novelty. Unlike the design of linear transformation using the tan-

gent space method in Equation (6), we build the transformation

fully in hyperbolic space. Besides, compared with Lorentz trans-

formation defined by Equation (7), we have two improvements:
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𝐓𝐕𝐬

𝑵𝒅𝟐

𝒅

𝑁

1 +

Hyperbolic Linear Attention

Figure 3: Illustration of Hyperbolic Linear attention. This at-
tention operates in the space-like dimension (Q𝑠 , K𝑠 , V𝑠 ) and
reduces the time complexity by changing the computation
order.
(1) making the curvature changeable with preserving the relative

ordering; (2) being disentangled with normalization term.

Given a point x in Lorentz model, x ∈ L𝑑,𝜅1 (implies x ∈ R𝑑+1),
and transformation matrix W ∈ R(𝑑+1)×𝑑 ′ and bias 𝑏 ∈ R𝑑 ′ , the
HTC is given as the following equation:

HTC(x; 𝑓𝑡 ,W, 𝜅1, 𝜅2) :=

©­­­­­­«
√︂

𝜅1

𝜅2
∥ 𝑓𝑡 (x;W)∥2

2
− 1/𝜅2︸                          ︷︷                          ︸

time-like dimension

,

√︂
𝜅1

𝜅2
𝑓𝑡 (x;W)︸           ︷︷           ︸

space-like dimension

ª®®®®®®¬

𝑇

,

(9)

where the 𝑓𝑡 (x;W) = W𝑇 x + 𝑏 denotes the linear transformation

with bias addition and 𝜅1, 𝜅2 represent the curvatures before and

after the transformation. Note that HTC does not entangle a nor-

malization term with this linear transformation. Besides, It is easy
to prove that the defined transformation also satisfies the
Lorentz rotation and boost operations, described in [9]. The
proof is similar in [9], we omit for brevity.

The proposed HTC avoids the use of tangent space and mini-

mizes the usage of logarithmic and exponential mappings in com-

parison to Equation (6). When contrasted with Equation (7), the

variable curvature of the HTC enhances the flexibility of the trans-

formation. This is because linear transformations generally alter

the feature dimension, and varying curvatures can express more

than a fixed one.

Next, we study the theoretical aspects of the proposed HTC. First

and foremost, we prove that HTC is closed in hyperbolic space in

Proposition (4.1) with different dimensions and curvatures so that

the mapping is done correctly. Next, in Proposition (4.2), we show

that the curvature-changing strategy of the proposed HTC, along

with the subsequent HRC, maintains the relative distance among

any points between pre and post-curvature changing.

Proposition 4.1. Let x ∈ L𝑑𝑎,𝜅𝑎 and W ∈ R(𝑑𝑎+1)×𝑑𝑏 . The LTC
operation, defined as LTC(x; 𝑓𝑡 ;W, 𝜅𝑎, 𝜅𝑏 ), correctly transforms x
from the Lorentz model with curvature 𝜅𝑎 to the Lorentz model with
curvature 𝜅𝑏 , such that

LTC(x; 𝑓𝑡 ;W, 𝜅𝑎, 𝜅𝑏 ) ∈ L𝑑𝑏 ,𝜅𝑏 . (10)

Proposition 4.2. Let z𝑖 , z𝑗 , z𝑘 ∈ L𝜅𝑎 be points in the Lorentz
model with curvature 𝜅𝑎 . Consider the curvature changing trans-
formations defined in HTC (Equation (7)) and HRC (Equation 13).
Let z′

𝑖
, z′
𝑗
, z′
𝑘

∈ L𝜅𝑏 denote the transformed points in the Lorentz
model with curvature 𝜅𝑏 . The relative distances within (z𝑖 , z𝑗 , z𝑘 ) are
preserved after the curvature alteration. Specifically, if

𝑑
𝜅𝑎
L (z𝑖 , z𝑗 ) ≥ 𝑑

𝜅𝑎
L (z𝑖 , z𝑘 ), (11)

then
𝑑
𝜅𝑏
L (z′𝑖 , z

′
𝑗 ) ≥ 𝑑

𝜅𝑏
L (z′𝑖 , z

′
𝑘
). (12)

4.2 Hyperbolic Readjustment and Refinement
with Curvatures (HRC)

Novelty. Within the Transformer, we have several basic opera-

tions beyond linear transformation, which include Dropout and
Concatenation, Activation function (e.g., ReLU), and LayerNorm. We

interpret these operations within the hyperbolic space as a readjust-

ment or refinement process, referred to as HRC. Similarly, given a

point x in Lorentz model, the proposed operation HRC is defined

as:

HRC(x; 𝑓𝑟 , 𝜅1, 𝜅2) :=

©­­­­­­«
√︂

𝜅1

𝜅2
∥ 𝑓𝑟 (x[1:] )∥22 − 1/𝜅2︸                          ︷︷                          ︸

time-like dimension

,

√︂
𝜅1

𝜅2
𝑓𝑟 (x[1:] )︸           ︷︷           ︸

space-like dimension

ª®®®®®®¬

𝑇

.

(13)

Here, 𝑓𝑟 represents a function applied to the space-like dimensions.

It is evident that HRC shares similar advantageswithHTC,which

we will not repeat for the sake of brevity. However, unlike HTC,

HRC performs the transformation only in space-like dimensions.

The primary motivation is as follows: HTC involves a Lorentz boost,

essential for mapping between different inertial reference frames,

tied to causality and affecting the observed sequence of events

in relativity. However, operations such as LayerNorm, activation

functions, dropout, and concatenation serve as readjustments or re-

finements within the same frame of reference, acting on space-like

features to standardize, activate, or regularize them. Applying these

to the space-like dimension ensures the causal structure remains

intact. In practical, it ensures dimensional consistency, improves

interpretability, and allows formore efficient computation. Nonethe-

less, it is important to note that HRC does not completely discard the

time-like information. According to the definition in Equation (1),

the time-like dimension is determined by the space-like dimensions.

By operating on the space-like dimensions, HRC implicitly utilizes

the time-like information.

4.3 Hyperbolic Linear Attention
In hyperbolic space, the traditional way of calculating self-attention

is quadratic time complexity, which hinders scalability. Therefore,

we defined a linear attention through HTC and HRC modules.

Specifically, given the 𝑁 input token feature with dimension

𝑑 , X ∈ L𝑁×𝑑,𝜅1
in the Lorentz model with transformation matrix
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Figure 4: Framework of Hypformer. Input data (text, images, graphs) are projected onto the Lorentz model, then transformed
via Hyperbolic Linear Transformation (HTC). The result passes through the hyperbolic linear attention block with positional
encoding, followed by a Feedforward layer (built by HTC) and LayerNorm (built by HRC). This serves as an encoder which can
optionally incorporate a GNN. For classification tasks in this study, the decoder is the fully connected layer. Dropout, activation,
and residual connections are omitted for brevity.

W𝑄 ,W𝐾 ,W𝑉 ∈ R(𝑑+1)×𝑑 ′ , we first transform it to Q,K and V ,

that is

Q = HTC(X; 𝑓𝑡 ,W𝑄 , 𝜅1, 𝜅2),

K = HTC(X; 𝑓𝑡 ,W𝐾 , 𝜅1, 𝜅2),

V = HTC(X; 𝑓𝑡 ,W𝑉 , 𝜅1, 𝜅2),

(14)

where Q,K andV ∈ L𝑁×𝑑 ′,𝜅2
Given that the subsequent pairwise

similarity computation and aggregation essentially constitute a

weighted sum, and their calculation does not involve transforma-

tions on the time-like dimension, we adopted the idea of HRC to

achieve this. Specifically, we first slice the values of the space-like

dimension,

Q𝑠 ,K𝑠 ,V𝑠 = 𝜙 (Q[1:] ), 𝜙 (K[1:] ), 𝜙 (V[1:] ) . (15)

To achieve linearity, we alter the computation sequence, i.e., tran-

sitioning from (Q𝑇K)V to Q(K𝑇V), inspired by [27]. Our inno-

vation lies in defining this operation in space-like dimensions and

recalibrating the time-like value to respect the Lorentz constraint,

Z𝑠 =
Q𝑠 (K𝑇𝑠 V𝑠 )
Q𝑠 (K𝑇𝑠 1)

. (16)

Before recalibrating, we incorporate the following residual connec-

tion:

˜Z𝑠 = Z𝑠 +𝜓 (V𝑠 ), (17)

and then do the time-like calibration and concatenation,

Z𝑡 =
√︂

𝜅2

𝜅3
∥ ˜Z𝑠 ∥2 − 1/𝜅3, (Time-like Calibration)

Z =

(
Z𝑡 ,

√︂
𝜅2

𝜅3

˜Zs

)
. (Re-concatenation)

(18)

In Equation (15, 16, 17), 1 denotes an all "1" vector, 𝜓 is a linear

layer and 𝜙 signifies the functions employed to enhance the focus

of the linear attention, i.e.,

𝜙 (ẽ) = ∥ẽ∥
∥ẽ𝑝 ∥ ẽ

𝑝 ,where ẽ𝑖 = ReLU(e)/𝑡, (19)

where e ∈ L𝑑 ′,𝜅2 represents the transpose of row in Q,K andV . In

this case, 𝑡 represents a scaling factor, which we set as a trainable

parameter in the experiments. The focused strategy is inspired

by the work in [27]. A 𝑝 > 1 sharpens the paired points, i.e., it

enhances the similarity within each group while diminishing the

similarity between the groups. Conversely, a 𝑝 < 1 has the opposite

effect.

This linear attention approach allows us to handle large datasets

and long sequences more efficiently while respecting the properties

of the Lorentz model.

4.4 Hyperbolic Positional Encoding
Positional encoding in a Transformer model is instrumental in

preserving the sequence of input tokens. In what follows, we intro-

duce a relative positional encoding with a trainable model inspired

by [39, 65].

x̃ =
x + 𝜖 · p√︁

|𝜅∥x + 𝜖 · p∥L |
. (20)

Here, p := HTC(x) functions as a Lorentz position vector, and 𝜖

specifies the magnitude of p and we use 1 in our experiments. This

definition calculates the midpoint between x and 𝜖 · p, with respect

to the Lorentz constraint. We add the positional encoding before

the linear transformation in the self-attention block. We reserve

the exploration of more advanced positional encoding for future

works.

4.5 Hyperbolic LayerNorm, Dropout, Activation,
and Concatenation

LayerNorm, Dropout, Activation, and Concatenation are fundamental

components of the Transformer architecture. For these operations,

we employ HRC in our definitions. This choice is motivated by the

fact that these functions are performed within the same reference

system and do not involve a time-like dimension. Consequently,

we define our operations as follows
6
:

HypLayerNorm(X) = HRC(X, 𝑓𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚),
HypBatchNorm(X) = HRC(X, 𝑓𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚),

HypDropout(X) = HRC(X, 𝑓𝐷𝑟𝑜𝑝𝑜𝑢𝑡 ),
HypActivation(X) = HRC(X, 𝑓𝜎 ),

HypConcatnation(X) = HRC((X𝑖 ,X𝑗 ), 𝑓𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛),

(21)

6
We also include BatchNorm for reference.
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Table 1: Testing results (ROC-AUC for ogbn-proteins and
Accuracy for other datasets) on large-scale node property
prediction benchmarks. OOM denotes out of memory dur-
ing training or testing, and OOT indicates the model could
not complete within the allocated time budget. The best and
second-best results are highlighted in red bold and under-
lined, respectively.

Method ogbn-proteins Amazon2m ogbn-arxiv Papers100M

#Nodes 132, 534 2, 449, 029 169, 343 111, 059, 956

#Edges 39, 561, 252 61, 859, 140 1, 166, 243 1, 615, 685, 872

MLP 72.0 ± 0.5 63.5 ± 0.1 55.5 ± 0.2 47.2 ± 0.3

GCN [34] 72.5 ± 0.4 83.9 ± 0.1 71.7 ± 0.3 OOM

SGC [71] 70.3 ± 0.2 81.2 ± 0.1 67.8 ± 0.3 63.3 ± 0.2

GCN-NSampler 73.5 ± 1.3 83.8 ± 0.4 68.5 ± 0.2 62.0 ± 0.3

GAT-NSampler 74.6 ± 1.2 85.2 ± 0.3 67.6 ± 0.2 63.5 ± 0.4

SIGN [22] 71.2 ± 0.5 81.0 ± 0.3 70.3 ± 0.3 65.1 ± 0.1

GraphFormer [84] OOM OOM OOM OOM

GraphTrans [74] OOM OOM OOM OOM

GraphGPS [55] OOM OOM OOM OOM

HAN [26] OOM OOM OOM OOM

HNN++ [61] OOM OOM OOM OOM

F-HNN [9] OOM OOM OOM OOM

NodeFormer [72] 77.5 ± 1.2 87.9 ± 0.2 59.9 ± 0.4 OOT

SGFormer [73] 79.5 ± 0.3 89.1 ± 0.1 72.4 ± 0.3 65.8 ± 0.5

Hypformer 80.4 ± 0.5 89.4 ± 0.3 73.2 ± 0.2 66.1 ± 0.4

where 𝑓𝐷𝑟𝑜𝑝𝑜𝑢𝑡 , 𝑓𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 , 𝑓𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 , and 𝑓𝜎 aswell as 𝑓𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛
represent traditional Euclidean Dropout, LayerNorm, and Activation
functions, respectively. In general, we define 𝜅 as unchanged before

and after the HRC. In the actual implementation process, for two

operations that appear consecutively, such as 𝑓1 = 𝑓𝐷𝑟𝑜𝑝𝑜𝑢𝑡 and

𝑓2 = 𝑓𝑅𝑒𝐿𝑈 , we merge them into 𝑓 = 𝑓1 ◦ 𝑓2 for computational

efficiency.

4.6 Overall Architecture
The framework of Hypformer is shown in Figure 4, it can accept

a variety of data types, such as text, images, and graphs. During

the data preparation phase, the input data is mapped to the Lorentz

model using an exponential map
7
. This mapped embedding is then

transformed using a HTC layer. In the encoder part of Hypformer,

the transformed data is processed through a hyperbolic linear at-

tention block with hyperbolic position encoding. This is followed

by the Feedforward layer implemented by HTC, and LayerNorm

layer built by HRC. For graph-based inputs, we incorporate the

graph neural networks and adopt the parallel paradigm [45] for

Transformer and GNN encoder to form a graph Transformer model.

The processed data is then forwarded to the decoder. The decoder

can either be the similar structure of encoder, hyperbolic multino-

mial logistic regression (HypMLR) [24, 61] or a tailored design, we

leave it in future exploration. In this research, the decoder is a fully

connected layer used for classification tasks.

Time complexity. In the proposed Hypformer, the linear atten-

tion module is the main computational bottleneck. The complexity

comes from two key operations. In Equation (16), we perform a

space-like inner product computation of K𝑇 and V within the

Lorentz model, which incurs a complexity of O(𝑑′2𝑁 ). Following
this, we calculate the inner product of these results with Q, which

also has a complexity of O(𝑑′2𝑁 ). Given that 𝑑′ << 𝑁 , the total

7
This step is necessary since most data are built from Euclidean space.

computational complexity of our method is O(𝑁 ). When dealing

with graph inputs, the computational complexity of a GNNmodel is

typicalO(𝑁 +𝐸), where 𝐸 represents the number of edges. Owing to

the typical sparsity of graphs (i.e., 𝐸 << 𝑁 2
), the proposed method

can scale linearly with respect to the number of nodes in a graph.

This design make Hypformer operate on graphs with billion-level

nodes.

5 Experiments
In this work, we propose a novel hyperbolic Transformer with linear

complexity, which is especially well-suited for processing graph-

structured data. Graphs often exhibit intricate topological and hier-

archical relationships, making them an ideal testbed for evaluating

the effectiveness of our proposed hyperbolic Transformer. As such,

we primarily focus on comparing our model’s performance with

other state-of-the-art graph models.

5.1 Experiments on Large Graphs
Experimental Settings.We first evaluate Hypformer on diverse

large-scale graphs for node classification, with node counts rang-

ing from millions to billions, including ogbn-arxiv, ogbn-protein,

and Papers100M (for dataset details, see Appendix C.1). To our

knowledge, this represents the first application of hyperbolic or

non-Euclidean transformations to graphs of this scale. Our com-

parative analysis focuses on state-of-the-art Euclidean GNNs and

graph Transformers. We evaluate Hypformer against a spectrum

of baselines, including MLP, GCN [35], SGC [71]), advanced GNN

variants (SIGN [22], GCN-NSampler, GAT-NSampler), recent graph

Transformer architectures (GraphFormer [84], GraphTrans [74],

GraphGPS [55], NodeFormer [72], SGFormer [73]) and hyperbolic

models HAN [26], HNN++ [61] and F-HNN [9].

Experimental Findings. Table 1 summarizes the results of

our experiments. Hypformer consistently outperforms other mod-

els across various large-scale graph datasets, demonstrating sub-

stantial improvements. It is worth noting that models, such as

GraphFormer [84], GraphTrans [74], and GraphGPS [55], HAN [26],

HNN++ [61] and F-HNN [9], have difficulty operating effectively

on large-scale graph data. In addition, our method significantly

outperforms the recent approaches such as, SGFormer and Node-

Former accross all tested scenarios, highlighting its superior effec-

tivness. Importantly, Hypformer exhibits robust scalability, main-

taining its performance advantage even on the largest dataset, ogbn-

papers100M, where previous Transformer-based models have en-

countered limitations.

5.2 Experiments on Small/Medium Graphs
To complement our large-scale evaluations, we assessed Hypformer

on small- and medium-scale graph datasets. This additional testing

allows for a more comprehensive comparison against current state-

of-the-art models, including GNNs, graph transformers, and hyper-

bolic approaches that may not scale effectively to larger datasets.

By expanding our evaluation scope, we aim to isolate Hypformer’s

effectiveness in graph learning from its scalability advantages.

Experimental Settings. We conducted experiments on five

small/medium-scale graph datasets, adhering closely to the settings

used in HGCN works [8]. These datasets included three low-degree
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Table 2: Testing results (F1-score for Disease and Accuracy
for other datasets) on small and medium-sized graph bench-
marks. The best and second-best results are highlighted in
red bold and underlined, respectively.

Models Disease Airport Cora Citeseer PubMed

#Nodes 1, 044 2, 665 2, 708 3, 327 19, 717

#Edges 1, 043 2, 664 5, 429 4, 732 88, 651

GCN [35] 69.7 ± 0.4 81.4 ± 0.6 81.3 ± 0.3 71.6 ± 0.4 78.1 ± 0.2

GAT [66] 70.4 ± 0.4 81.5 ± 0.3 83.0 ± 0.7 72.5 ± 1.1 79.0 ± 0.3

SGC [71] 69.1 ± 0.6 82.1 ± 0.5 80.1 ± 0.2 71.9 ± 0.1 78.7 ± 0.1

HGNN [43] 81.3 ± 3.5 84.7 ± 1.0 77.1 ± 0.8 70.0 ± 1.0 78.3 ± 1.2

HGCN [8] 88.2 ± 0.7 89.3 ± 1.2 76.5 ± 0.6 68.0 ± 0.6 78.0 ± 1.0

HGAT [8] 90.3 ± 0.6 89.6 ± 1.0 77.4 ± 0.7 68.6 ± 0.3 78.3 ± 1.4

GraphFormer [84] 75.2 ± 0.0 88.1 ± 1.2 60.0 ± 0.5 61.4 ± 0.6 73.3 ± 0.7

GraphTrans [74] 89.3 ± 3.2 94.3 ± 0.6 77.6 ± 0.8 65.1 ± 1.4 77.5 ± 0.7

GraphGPS [55] 92.8 ± 2.7 94.5 ± 0.9 73.0 ± 1.4 62.0 ± 1.5 72.8 ± 1.4

FPS-T [12] 88.6 ± 0.9 96.0 ± 0.6 82.3 ± 0.7 70.0 ± 0.7 78.5 ± 0.6

HAN [26] 85.1 ± 0.8 92.9 ± 0.6 83.1 ± 0.5 72.4 ± 0.5 79.0 ± 0.6

HNN++ [61] 89.5 ± 0.2 92.3 ± 0.3 82.8 ± 0.6 71.5 ± 1.3 79.9 ± 0.4

F-HNN [9] 92.3 ± 1.1 93.0 ± 0.7 81.0 ± 0.7 71.2 ± 0.4 77.5 ± 0.8

NodeFormer [72] 75.9 ± 0.9 80.2 ± 0.6 82.2 ± 0.9 72.5 ± 1.1 79.9 ± 1.0

SGFormer [73] 89.0 ± 3.9 92.9 ± 0.5 83.2 ± 0.9 72.2 ± 0.3 80.0 ± 0.8

Hypformer 93.0 ± 0.7 95.0 ± 0.5 85.0 ± 0.3 73.3 ± 0.4 81.3 ± 0.3

hyperbolicity datasets: citeseer, cora [60], and PubMed [48], as

well as two high-degree hyperbolicity datasets: Airport and Dis-

ease. The number of nodes and edges are shown in Table 2. For

data split and processing, please refer to Appendix C.2.

Experimental Findings.Table 2 showcases all the experimental

results
8
. Our findings suggest that the proposed method signifi-

cantly surpasses both standard GNNs and hyperbolic GNN models

by a substantial margin. Importantly, the method exhibits effec-

tiveness not only in scenarios with hyperbolic datasets (like Dis-

ease, Airport) but also in situations with non-hyperbolic dataset

(like Cora, CiteSeer and PubMed). The existing hyperbolic GNN

model [8] had a notable deficiency in this non-hyperbolic datasets.

However, by introducing a hyperbolic Transformer, we have suc-

cessfully overcome this problem. This thanks to that Transformers

possess long-distance learning capabilities. However, on datasets

such as Cora, Citeseer, and PubMed, the existing graph Trans-

formers cannot perform well. The primary reason might be that the

Transformer equals a fully linked aggregation, which will introduce

substantial noise. Nevertheless, our method employs linear-focused

attention to solve this issue effectively.

5.3 Comparisons on Text and Vision Datasets
Additionally, we apply our model to semi-supervised image and

text classification tasks on the Mini-ImageNet and 20News-Groups

datasets.We also construct a graph using k-NN (based on input node

features) to utilize graph model. These experiments are conducted

closely in Nodeformer. More comprehensive details are provided in

Appendix C.3. Table 3 presents the comparative results for varying

𝑘 values. Notably, our method outperforms in seven out of eight

cases. In contrast, the performance of competing baselines models

varying significantly with different k values, while our method

demonstrates greater stability.

8
Missing values indicate that there were no previous experiments conducted and the

results could not be reproduced.
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Figure 5: Scalability test on an A100 with the proposed lin-
ear attention and softmax attention of training time per
epoch and GPU memory usage w.r.t. the number of input
tokens/nodes.

6 Analysis
Scalability of Hypformer. We conducted additional tests on the

model’s scalability regarding the number of nodes in a single batch.

The Amazon2M dataset was used, and we randomly selected a

subset of nodes, with the number of nodes varying from 10K to

200K. We made a comparison between softmax attention defined by

Equation (3) and linear attention defined by Equation (16), keeping

all other parameters the same. As depicted in Figure 5, the memory

usage of the proposed method exhibits a linear increase with the

size of the graph. When the node count exceeds 40K, the softmax

attention experiences an out-of-memory (OOM) issue. However,

the proposed method continues to function effectively, resulting in

a 10X reduction in GPU cost.

Efficiency and Effectiveness of Hypformer. The linear atten-
tion designed for Hypformer enhances its efficiency significantly.

Table 4 presents the efficiency of both softmax attention and lin-

ear attention within Hypformer.
9
As indicated in Table 4, the pro-

posed linear attention mechanism significantly reduces the training

time by half compared to the softmax attention in Hypformer. Fur-

thermore, The left subfigure in Figure 6 presents the performance

comparison between Hypformer equipped with Softmax attention

(Hypformer(S)) and Linear attention (Hypformer(L)). The results

demonstrate that both models perform well, with the linear atten-

tion exhibiting better accuracy.

Effectiveness of Curvature 𝜅. In this work, we propose that

both the HTC andHRC basic blocks involve two variable curvatures.

In our experiment, we set these as trainable parameters. In the right

Figure 6, we compare the impact of varying 𝜅 and fixed curvature

on the Hypformer. Experiments show that varying 𝜅 can always

perform better than the unified one.

Ablation Study. To gain a deeper understanding of the proposed
Hyperbolic Transformer’s effectiveness, we conducted an ablation

study on three diverse datasets. We compared the performance

of the original Hyperbolic Transformer with two variants: one

without the graph component (W/o Graph) and another without

9
To ensure a fair comparison, we have maintained the batch size at a smaller value

(40K for Amazon2m and 10K for others) across all tests.
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Table 3: Experimental results on semi-supervised classification on Mini-ImageNet and 20News-Groups where we use k-NN
(with different k’s) for artificially constructing an input graph. The best and second-best results are highlighted in red bold and
underlined, respectively, where models with and without graph are compared separately.

Method

Mini-ImageNet 20News-Group

𝑘 = 5 𝑘 = 10 𝑘 = 15 𝑘 = 20 𝑘 = 5 𝑘 = 10 𝑘 = 15 𝑘 = 20

GCN [35] 84.86 ± 0.42 85.61 ± 0.40 85.93 ± 0.59 85.96 ± 0.66 65.98 ± 0.68 64.13 ± 0.88 62.95 ± 0.70 62.59 ± 0.62

GAT [67] 84.70 ± 0.48 85.24 ± 0.42 85.41 ± 0.43 85.37 ± 0.51 64.06 ± 0.44 62.51 ± 0.71 61.38 ± 0.88 60.80 ± 0.59

DropEdge [58] 83.91 ± 0.24 85.35 ± 0.44 85.25 ± 0.63 85.81 ± 0.65 64.46 ± 0.43 64.01 ± 0.42 62.46 ± 0.51 62.68 ± 0.71

IDGL [10] 83.63 ± 0.32 84.41 ± 0.35 85.50 ± 0.24 85.66 ± 0.42 65.09 ± 1.23 63.41 ± 1.26 61.57 ± 0.52 62.21 ± 0.79

LDS [21] OOM OOM OOM OOM 66.15 ± 0.36 64.70 ± 1.07 63.51 ± 0.64 63.51 ± 1.75

NodeFormer [72] 86.77 ± 0.45 86.74 ± 0.23 86.87 ± 0.41 86.64 ± 0.42 66.01 ± 1.18 65.21 ± 1.14 64.69 ± 1.31 64.55 ± 0.97

SGFormer 86.21 ± 0.66 86.46 ± 0.61 86.73 ± 0.84 86.76 ± 0.72 68.55 ± 0.54 67.96 ± 0.68 66.44 ± 0.87 65.46 ± 0.59

NodeFormer w/o graph [73] 87.46 ± 0.36 64.71 ± 1.33

SGFormer w/o graph [73] 87.25 ± 0.38 67.53 ± 0.43

Hypformer 87.36 ± 0.73 87.30 ± 0.65 87.41 ± 0.59 87.48 ± 0.61 68.21 ± 0.78 68.01 ± 0.34 66.87 ± 0.30 66.74 ± 0.19

Hypformer w/o graph 87.73 ± 0.63 67.73 ± 0.23

Table 4: Efficiency comparison by running time (ms) per
epoch between the softmax full and the proposed linear at-
tention in Hypformer on an A100 GPU.

Method

ogbn-proteins Amazon2M ogbn-arxiv

Train (ms) Test (ms) Train (ms) Test (ms) Train (ms) Test (ms)

Hypformer (Softmax) 11.9 OOM 37.38 OOM 7.8 OOM

Hypformer (Linear) 5.3 2.4 16.32 2.5 3 2.5
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Figure 6: Left: Comparison of the proposed linear atten-
tion and softmax attention on small/medium datasets. Right:
Comparison of unified curvature (Hypformer(L, C)) and vary-
ing curvature (Hypformer(L, C+))

the Transformer component (W/o Transformer). The results of this

study are presented in Table 5.

For the Cora dataset, a citation network, removing the graph

component leads to a substantial performance drop. This indicates

the crucial role of the graph structure in capturing the relation-

ships between nodes in this context. The Transformer component

alone (W/o Graph) is insufficient for effectively modeling node in-

teractions. Conversely, removing the Transformer component (W/o

Transformer) still yields reasonable performance, highlighting the

importance of the graph component for this dataset. In the case of

the ogbn-proteins dataset, which represents a protein-protein inter-

action network, both the graph and Transformer components con-

tribute significantly to the model’s performance. This suggests that

the interplay between the graph structure and the Transformer’s

ability to capture long-range dependencies is essential for accu-

rately modeling the complex interactions in this biological network.

For the 20news dataset, which comprises textual data, the graph

is constructed from the original features and may not accurately

reflect the true relationships between documents. In this case, the

Table 5: Ablation study

Dataset W/o Graph W/o Transformer Hypformer

Cora 64.6 ± 0.5 82.8 ± 0.3 85.0 ± 0.3
ogbn-proteins 70.0 ± 0.2 75.9 ± 0.4 80.4 ± 0.5
Mini-ImageNet 87.7 ± 0.6 85.8 ± 0.5 87.4 ± 0.7

model performs best when the graph component is removed (W/o

Graph), indicating that the graph structure might not be as infor-

mative for this particular dataset. The Hyperbolic Transformer

component alone is sufficient to capture the semantic relationships

between documents. These findings underscore the adaptability of

the Hyperbolic Transformer to various datasets and its ability to

leverage both graph structure and long-range dependencies when

appropriate.

7 Conclusion
In this work, we introduce a efficient hyperbolic Transformer,

Hypformer. This method operates directly and fully on hyperbolic

representations and employs a linear attention mechanism, en-

abling it to be both scalable and effective. Furthermore, this study

introduces two basic blocks, HTC and HRC, which are foundational

in constructing hyperbolic models. Nonetheless, the research pre-

sented is an initial exploration and numerous challenges warrant

further investigation. These include the initial determination of a

curvature that better reflects the data geometry, the setting of cur-

vature at different levels for Hypformer, and the design of effective

decoders for different downstream tasks. We plan to address these

issues in our future work.
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A Exponential and Logarithmic Map
ExponentialMap. The exponential map, denoted as exp

𝜅
x : TxL𝑛,𝜅 →

L𝑛,𝜅 , is a function that project any tangent vector u from the tan-

gent space at point x, TxL𝑛,𝜅 , to the manifold L𝑛,𝜅 , which is given

as

exp
𝜅
x (u) = cosh

(√︁
|𝜅 |∥u∥L

)
x +

sinh

(√︁
|𝜅 |∥u∥L

)
√︁
|𝜅 |∥u∥L

u. (22)

Logarithmic Map. The logarithmic map log
𝜅
u : L𝑛,𝜅 → TuL𝑛,𝜅

plays an opposite role, more specifically,

log
𝜅
u (x) =

cosh
−1 (𝜅⟨u, x⟩L )

sinh

(
cosh

−1 (𝜅⟨u, x⟩L ) ) (
x − 𝜅⟨u, x⟩Lu

)
. (23)

Lorentz Distance. The Lorentz distance between two points

(x ∈ L𝑛,𝜅 , y ∈ L𝑛,𝜅 ) is given as:

𝑑𝜅L (x, y) = 1√︁
|𝜅 |

cosh
−1 (𝜅⟨x, y⟩L ) (24)

B Proof
Proof of Proposition 4.1

Proof. Let Lx = LTC(x; 𝑓𝑡 ;W, 𝜅𝑎, 𝜅𝑏 ) and ⟨Lx, Lx⟩L = 1/𝜅𝑏
holds. Besides, 𝑓𝑡 (x;W) : R𝑑𝑎+1 → R𝑑𝑏 . With the time-like di-

mension re-calibration and concatenation, Lx ∈ R𝑑𝑏+1 . Therefore
Lx ∈ L𝑑𝑏 ,𝜅𝑏 □

Proof of Proposition 4.2

Proof. First, let

z =
(√︃

∥ 𝑓 (x;W)∥2
2
− 1/𝜅1, 𝑓 (x;W)

)
and then

HTC(𝑥,𝑊 ,𝜅1, 𝜅2) =
√︂

𝜅1

𝜅2
· z.

We know z ∈ L𝜅1 and z′ = HTC(𝑥,𝑊 ,𝜅1, 𝜅2) ∈ L𝜅2 . Consider the
distance between any pair of points in L𝜅1 and L𝜅2 :

𝑑
𝜅1
L

(
z𝑖 , z𝑗

)
=
√︁
1/|𝜅1 |arcosh

(
𝜅1⟨z𝑖 , z𝑗 ⟩L

)
, (25)
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𝑑
𝜅1
L (z𝑖 , z𝑘 ) =

√︁
1/|𝜅1 |arcosh

(
𝜅1⟨z𝑖 , z𝑘 ⟩L

)
, (26)

𝑑
𝜅2
L

(
z′𝑖 , z

′
𝑗

)
=
√︁
1/|𝜅2 |arcosh

(
𝜅2⟨z′𝑖 , z

′
𝑗 ⟩L

)
, (27)

𝑑
𝜅2
L

(
z′𝑖 , z

′
𝑘

)
=
√︁
1/|𝜅2 |arcosh

(
𝜅2⟨z′𝑖 , z

′
𝑘
⟩L

)
. (28)

We aim to prove that if

𝑑
𝜅1
L

(
z𝑖 , z𝑗

)
≥ 𝑑

𝜅1
L (z𝑖 , z𝑘 ) , (29)

then

𝑑
𝜅2
L

(
z′𝑖 , z

′
𝑗

)
≥ 𝑑

𝜅2
L

(
z′𝑖 , z

′
𝑘

)
. (30)

Let us expand 𝑑
𝜅2
L

(
z′
𝑖
, z′
𝑗

)
:

𝑑
𝜅2
L

(
z′𝑖 , z

′
𝑗

)
=
√︁
1/|𝜅2 |arcosh

(
𝜅2⟨z′𝑖 , z

′
𝑗 ⟩L

)
,

=
√︁
1/|𝜅2 |arcosh

(
𝜅2

√︂
𝜅1

𝜅2
·
√︂

𝜅1

𝜅2
⟨z𝑖 , z𝑗 ⟩L

)
=
√︁
1/|𝜅2 |arcosh

(
𝜅1⟨z𝑖 , z𝑗 ⟩L

)
=

√︂
𝜅1

𝜅2

(
𝑑
𝜅1
L

(
z𝑖 , z𝑗

) )
(31)

Similarly, we can show that:

𝑑
𝜅2
L

(
z′𝑖 , z

′
𝑘

)
=

√︂
𝜅1

𝜅2
𝑑
𝜅1
L (z𝑖 , z𝑘 ) (32)

Given the inequality in (29), we can multiply both sides by

√︃
𝜅1
𝜅2

(which is positive):√︂
𝜅1

𝜅2
𝑑
𝜅1
L

(
z𝑖 , z𝑗

)
≥
√︂

𝜅1

𝜅2
𝑑
𝜅1
L (z𝑖 , z𝑘 ) (33)

Substituting from (31) and (32), we obtain:

𝑑
𝜅2
L

(
z′𝑖 , z

′
𝑗

)
≥ 𝑑

𝜅2
L

(
z′𝑖 , z

′
𝑘

)
. (34)

This proves the desired inequality (30). □

C Data Processing and Experimental Details
C.1 Data Processing for Large-graph Data
We employ the public splits offered by OGB [30] for ogbn-proteins

and ogbn-arxiv datasets. Additionally, we assess our approach us-

ing models on the Amazon2M item co-occurrence network, which

comprises 2.45 million nodes and 61.86 million edges. For Ama-

zon2M, we follow the same splits used in recent studies [72, 73].

The largest dataset we employ is ogbn-papers100M, boasting an

impressive 0.11 billion nodes and 1.61 billion edges. We also adhere

to the publicly available OGB splits for this dataset.

C.2 Data Processing for Medium-graph Data
We used standard splits [34] for the citation networks. For the Air-

port and Disease datasets, the train/val/test splits were 70%/15%/15%

and 30%/10%/60%, respectively, which is the same as [8]. We report

the results of five runs on the node classification task. For Disease

and Airport, which are imbalanced, we report the F1-score. For the

other datasets, we report the accuracy. Baselines. For the baselines,
we compare Hypformer against the basic GNN models, including

GCN [34], GAT [66] and SGC [71]. For Hyperbolic GNNmodels, we

utilized HGCN [8], LGCN [93] and HGNN [20] as the competitors.

We also compared with state-of-the-art Euclidean graph Transform-

ers models viz. Graphomer [84], GraphTrans [74], GraphGPS [55],

NodeFormer [72] and SGFormer [73]. Graphormer suggested the

incorporation of edge connectivities into the model by employing

shortest-path distances to bias the attention mechanism. Graph-

Trans introduced a permutation-invariant Transformer module

combined with a GNN module. While, Nodeformer, GraphGPS and

SGFormer each introduced linear attention mechanisms. Specifi-

cally, Nodeformer employed a kernelized Gumbel-Softmax, while

GraphGPS seperated the local real-edge aggregation and the fully-

connected Transformer to achieve this complexity. Besides, we also

compared with non-Euclidean transformers, i.e., the HAN [26] and

FPS-T [12].

C.3 Data Processing for Text and Image Data
We tested our model on two datasets without a graph structure:

20News-Groups and Mini-ImageNet. For our experiment, we se-

lected 30 classes from the dataset, each with 600 images with 128

features extracted by a CNN. These settings closely follow the Node-

former [72]. For each dataset, we randomly allocate instances into

training, validation, and testing sets, comprising 50%, 25%, and 25%

of the data, respectively. Following existing works [86–88], we also

construct a graph using k-NN (based on input node features) to facil-

itate the message passing of GNN and the graph transformer. All the

datasets we used in the experiment were directly sourced, except

for Mini-ImageNet, for which we extracted the features ourselves.

Following the approach of [72], we computed node embeddings

using a CNN model with four convolutional layers followed by a

fully connected layer, resulting in a 128-dimensional embedding.

These 128-dimensional outputs are then used as the features of

the nodes (images) for subsequent tasks based on Graph Neural

Networks (GNNs).

C.4 Implementation Details
In the reported results, we mainly refer to findings from several

relevant works for the baseline comparisons [8, 71, 81]. For the most

relevant studies, such as SGFormer, other Graph Transformers, we

reproduce results using identical experimental settings to ensure a

fair comparison. It is important to note that the results of SGFormer

cannot be fully reproduced due to errors in its official code imple-

mentation. To maintain the integrity of our analysis, we report

the performance of SGFormer based on the available information

while acknowledging the discrepancy caused by the implementa-

tion issues. Our experimental setup for Hypformer mainly follows

the configurations used in SGformer. Additionally, we performed

parameter tuning for the input curvature and output curvature, ex-

ploring values within [1.0, 2.0, 3.0]. This is grounded in our hypoth-

esis that the input attributes and hidden states belong to different

curvature spaces. While a more detailed curvature setting could be

employed, we leave this for future exploration. Furthermore, we

conducted a parameter search for 𝑝 in Equation (19) within [1.0, 2.0,

3.0]. Regarding the decoder, we created Euclidean and hyperbolic

classifiers for experiments, with the Euclidean classifier performing

better in most cases.


	
	
	
	
	
	
	
	
	
	
	
	

