
Dynamic Mixture-of-Experts for Incremental Graph Learning
Lecheng Kong

jkong@amazon.com

Amazon

Theodore Vasiloudis

thvasilo@amazon.com

Amazon

Seongjun Yun

sjyun@amazon.com

Amazon

Han Xie

hanxie@amazon.com

Amazon

Xiang Song

xiangsx@amazon.com

Amazon

Abstract
Graph incremental learning is a learning paradigm that aims to

adapt trained models to continuously incremented graphs and data

over time without the need for retraining on the full dataset. How-

ever, regular graph machine learning methods suffer from cata-

strophic forgetting when applied to incremental learning settings,

where previously learned knowledge is overridden by new knowl-

edge. Previous approaches have tried to address this by treating the

previously trained model as an inseparable unit and using regular-

ization, experience replay, and parameter isolation to maintain old

behaviors while learning new knowledge. These approaches, how-

ever, do not account for the fact that previously acquired knowledge

at different timestamps contributes differently to learning new tasks.

Some prior patterns can be transferred to help learn new data, while

others may deviate from the new data distribution and be detrimen-

tal. Moreover, in the graph context, a node’s receptive field contains

neighbors from different data blocks, requiring variable process-

ing, and an inseparable unit fails to account for such variability. To

address this, we propose a dynamic mixture-of-experts (DyMoE) ap-

proach for incremental learning. Specifically, a DyMoE GNN layer

adds new expert networks specialized in modeling the incoming

data blocks. We design a customized regularization loss that utilizes

data sequence information so existing experts can maintain their

ability to solve old tasks while helping the new expert learn the

new data effectively. As the number of data blocks grows over time,

the computational cost of the full mixture-of-experts (MoE) model

increases. To address this, we introduce a sparse MoE approach,

where only the top-𝑘 most relevant experts make predictions, signif-

icantly reducing the computation time. Our model achieved 4.92%

relative accuracy increase compared to the best baselines on class

incremental learning, showing the model’s exceptional power.

CCS Concepts
• Computing methodologies→Machine learning.

Keywords
Graph Neural Network, Continual Learning, Mixture of Experts.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’25, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Lecheng Kong, Theodore Vasiloudis, Seongjun Yun, Han Xie, and Xiang

Song. 2018. Dynamic Mixture-of-Experts for Incremental Graph Learning.

In Proceedings of Knowledge Discovery and Data Mining (KDD ’25). ACM,

New York, NY, USA, 14 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Graph neural networks (GNN) achieved great success in modeling

graph data and have many applications, such as recommender sys-

tems [36], drug discovery [9], and traffic forecasting [13]. However,

in many real-world settings, the graph is dynamic, starting small

and expanding over time, and the training data arrive as sequences

of data blocks with timestamps. Naive approaches train on the

full graph whenever new data appears, which incurs expensive

computational costs due to repetitive training on old data. On the

other hand, simply finetuning conventional GNNs on the new data

leads to catastrophic forgetting, where the model’s prediction shifts

toward the new data distribution and forgets how to handle pre-

viously learned tasks upon encountering new data [6, 39, 44, 46].

This motivated a series of continual learning research to tackle this

problem [8, 38, 41].

Pioneering efforts focused on adapting incremental learning

approaches for other data modalities to the graph domain [30, 39,

48]. However, they ignore the fact that nodes and edges are not

independent and identically distributed (i.i.d.) in the graph learning

scenario [34, 35]. In the vision and language domain, individual

image or text data points do not affect each other, and future data

blocks do not impact the data distribution of the existing data

blocks. In contrast, new graph data blocks connect to existing data

via edges and could significantly change existing data distribution.

For example, an incoming data block can add edges between two

disconnected components in an existing graph, drastically changing

the graph topology and, subsequently, the learned model behavior.

Such uniqueness makes graph incremental learning an even more

challenging scenario than incremental learning in other domains.

Subsequent efforts tackled the problem in several ways [31,

34, 39]. For instance, PI-GNN [43] rectified the old model on the

graph modified by the new data. TWP [20] identified topology-

aware parameters to stabilize the model under graph structure shift.

DiCGR [18] breaks relation triplets to components to better capture

graph structures. RLC-CN [23] determines the optimal memory size

for effective efficiency/performance trade-off. SSRM [28] minimizes

structural shift loss to mitigate performance degradation on old

nodes.

These methods show improvements in the graph setting com-

pared to the naive adaptation of incremental learning methods from

other domains. However, a commonality of these approaches is that

ar
X

iv
:2

50
8.

09
97

4v
1

 [
cs

.L
G

]
 1

3
A

ug
 2

02
5

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://arxiv.org/abs/2508.09974v1

KDD ’25, June 03–05, 2018, Woodstock, NY Kong et al.

they build the new model upon an inseparable old model. Specifi-

cally, Elastic Weight Consolidation (EWC) [17] used the old model

parameters as the single regularization target for all parameters; Ex-

perience Replay (ER) [48] trained the model using all saved subsets

of nodes from old data blocks; Parameter Isolation (PI-GNN) [43]

froze all old model parameters and used an additional network

to modify the model output. Such a pattern causes inflexibility

when dealing with the "stability versus plasticity dilemma" [15]

commonly seen in the continual learning domain, where the model

needs to effectively trade-off between maintaining old knowledge

(stability) and learning new (plasticity).

For example, in Figure 1, blue, red, and green nodes represent

data blocks one, two, and three that arrive in order in all three

cases, and we update the model whenever a data block arrives.

Block one and two are identical in all cases, while block three is

isolated, connected to both blocks two and three, and connected

to block two only in cases A, B, and C, respectively. After learning

blocks one and two, the model needs to learn block three while

maintaining old knowledge. Previous approaches tackle cases A

and B, where the new block relates to old blocks by similar patterns

(no correlation to all blocks in case A, and high correlation in case

B), and they use the same strategy to retain knowledge from both

blocks one and two. However, in case C, where the new block is

partially dependent on the old blocks, they still apply the same

stabilizing strength to knowledge acquired from previous blocks.

While a stronger stabilizing effect is required tomaintain knowledge

in block one as it is more divergent from the new block, a smaller

effect is desirable for knowledge in data block two as it is similar

to the new block and weaker stabilizing enables better knowledge

transfer and learning. Conventional approaches lack the flexibility

to handle such diversity among data blocks and hence witness

performance degradations.

To tackle this problem, we propose a Dynamic Mixture-of-Expert

(DyMoE) module to use separate expert networks to model different

data blocks with a gating mechanism to synthesize information

from the most relevant experts. Specifically, the module has the

same number of experts as trained data blocks, and the experts

are dedicated to learning from their corresponding data blocks.

DyMoE routes the input to experts through a gating mechanism,

and the expert outputs are combined through the gating values by

a weighted sum. This approach explicitly considers the correlation

between different experts and data blocks. For the same example

in Figure 1, we train three separate experts with specialization in

their corresponding data blocks. We then compute the relevance of

the experts to the input. The experts with higher relevance have a

higher impact on the prediction. This approach dynamically adjusts

the combination of knowledge from different data blocks; less im-

pactful experts are disabled during inference to reduce misleading

information. When a new data block arrives, we append a new

expert dedicated to the new data block without interfering with the

knowledge of existing experts during training. To ensure each ex-

pert focuses on the assigned data block, we propose a block-guided

loss as a training objective that enforces a high relevance score of

experts to the input from their corresponding data blocks, greatly

reducing catastrophic forgetting while allowing flexible querying

of old knowledge.

While DyMoE applies to most neural architectures, it is partic-
ularly useful for graph incremental learning, where nodes’
receptive fields contains neighbor nodes from different data blocks.

We apply DyMoE to graph neural networks such that different

experts can process nodes from different data blocks in the same

ego subgraph, largely preserving the authenticity of the node’s rep-

resentation. Another challenge is that nodes in future data blocks

change the topology and information in the old data blocks, as they

become neighbor nodes to the old data blocks. We extend the gating

mechanism to distinguish future neighbors from the old, we then

filter future nodes for the old experts, largely recovering the old be-

havior and reducing forgetting. To increase efficiency, we propose

a sparse variant, inspired by Shazeer et al. [26], that only considers

the most relevant experts during inference, significantly reducing

the computation complexity while maintaining high accuracy. In

this paper, we

• Identified the issue of existing continual learning methods

that ignore the correlation between different data blocks.

• Designed a DyMoE module with specialized experts for each

data block and proposed data block-guided loss to minimize

the negative interference between experts.

• Interleave the DyMoE module into GNNs and use graph

block-guided loss to address the data shift problem unique

to graph continual learning.

• Developed a sparse version of the DyMoE module so the

model is both efficient and effective.

In our empirical evaluation, DyMoE maintains the same effi-

ciency, while significantly improving over the best baseline in class

incremental learning setting. The model also demonstrates strong

results in instance incremental settings.

2 Preliminaries
Graph Incremental Learning. This paper focuses on incremental

learning for node classification. Specifically, we follow the widely

adopted problem formulation [8, 41], and aim to incrementally learn

from a graph data block sequence 𝐷 = {𝐺 (1) , ...,𝐺 (𝑡) }, and each

data block is a graph 𝐺 (𝑖) = (𝑉 (𝑖) , 𝐸 (𝑖) ,𝒚 (𝑖)) where 𝑉 (𝑖)
is the set

of nodes, and 𝐸 (𝑖) is the set of edges, and 𝒚 (𝑖)
is the classification

labels of the nodes. Future graph snapshots expand on existing

graphs, and 𝐺 (𝑖)
is a subgraph of 𝐺 (𝑗)

for 𝑖 < 𝑗 . We additionally

use Δ𝐺 (𝑖) = (𝑉 (𝑖) \𝑉 (𝑖−1) , 𝐸 (𝑖) \ 𝐸 (𝑖−1)) to represent the graph

delta between 𝐺 (𝑖)
and 𝐺 (𝑖−1)

. We use 𝑏 (𝑣) to indicate the data

block index where the data/node 𝑣 first appears. In the incremental

learning setting, data arrive in order, and the 𝑖-th model is only

trained and evaluated on (𝐺 (1) , ...,𝐺 (𝑖)) without any knowledge

about future graphs. The goal is to maximize the overall accuracy on

each data blockwhile minimizing the performance drop on previous

data blocks. If the classes in 𝒚 (𝑖)
persist throughout all blocks, we

refer to the task as instance-incremental learning [33]. If the classes

in 𝒚 (𝑖)
are disjoint, we refer to the task as class-incremental. In this

case, new data blocks also bring in new classes [45], and the model

needs to classify a sample without knowing its corresponding block

during inference.

Dynamic Mixture-of-Experts for Incremental Graph Learning KDD ’25, June 03–05, 2018, Woodstock, NY

Block 1 Block 2 Block 3No Impact Regular Impact High Impact

Case A!!

!"

!#

Ti
m

el
in

e

Incremental Graph

Δ! =

Δ! = Expert 1 Expert 2 Expert 3 Expert 1 Expert 2 Expert 3 Expert 1 Expert 2 Expert 3

Case B Case C

Different correlation between data blocks and expert importance

Figure 1: Left: Data blocks arrive in sequence. Right: Different connection types of three data blocks. Our proposed method
activates dedicated experts when inferring relevant data blocks.

The naive solution is to train a model on the full graph 𝐺 (𝑖)
for

every block. However, this requires retraining on all old data multi-

ple times, incurring huge computational costs. Incremental learning

methods aim to train only on the graph delta while maintaining

good performance on the old data.

To evaluate a model, let 𝑎𝑖, 𝑗 be the accuracy of all evaluation

nodes in 𝐺𝑖 , evaluated by the model after training 𝐺 𝑗 , which is a

superset of evaluation nodes in 𝐺 (𝑖)
and 𝑖 ≤ 𝑗 . We evaluate the

overall model performance by Average Accuracy (AA) and Average

Forgetting (AF),

𝐴𝐴 =
1

𝑡

𝑡∑︁
𝑖=1

𝑎𝑖,𝑖 , 𝐴𝐹 =
1

𝑡

𝑡∑︁
𝑗=1

1

𝑗

𝑗∑︁
𝑖=1

𝑎𝑖, 𝑗 − 𝑎𝑖,𝑖 (1)

where 𝑡 is the number of data blocks. AA evaluates the model’s

average accuracy right after the model is trained on a data block,

while AF evaluates the model’s ability to retain knowledge from

previous data blocks. The goal of an incremental learning method

is to maximize AA and minimize AF.

Graph Neural Networks Graph neural networks iteratively

update a node’s embeddings from their neighbor nodes through

message-passing layers [10]. Specifically, for a graph 𝐺 = (𝑉 , 𝐸),
the 𝑖-th layer of a 𝑇 -layer GNN is,

𝒉(𝑖+1)
𝑣 = 𝐶𝑂𝑀𝐵(𝒉(𝑖)𝑣 , 𝐴𝐺𝐺𝑅({𝒉(𝑖)𝑢 |𝑢 ∈ N (𝑣)}), 𝑣 ∈ 𝑉 (2)

where N(𝑣) are the direct neighbors of 𝑣 . Different GNN designs

differ mainly by the combine (COMB) and aggregate (AGGR) func-

tions.

3 Dynamic Mixture-of-Experts Graph Neural
Network

This section first introduces the Dynamic Mixture-of-Experts (Dy-

MoE) module that dynamically increases the number of experts

for new data blocks. We then describe the integration of DyMoE

and GNN for effective graph incremental learning. To overcome

the efficiency issue with long data sequences, we propose Sparse

DyMoE to reduce the complexity of our framework. The overall

architecture of the framework is shown in Figure 2.

3.1 Dynamic Mixture-of-Experts Module
Conventional mixture-of-experts (MoE) models create networks of

the same architecture and apply a gating mechanism to combine

the networks’ outputs using a weighted sum [26]. The number of

experts is fixed after initialization. However, to accommodate new

data blocks, MoE models suffer from the same issue as in other

continual learning methods. They still need to adjust the weights

of all previous experts, leading to forgetting. To mitigate this, we

propose the DyMoE module, adding one expert for every new data

block without modifying previously trained experts. Let F be a

class of neural networks with the same architecture, and 𝑓𝜃 ∈ F
be an instance of the network parametrized by 𝜃 . Specifically,

𝒉 = 𝑓𝜃 (𝒙) 𝒙 ∈ R𝑛,𝒉 ∈ R𝑚, 𝑓𝜃 ∈ F (3)

where 𝒙 and 𝒉 are the input and output to the network, and 𝑛

and𝑚 are the input and output dimensions. Given an incremental

data sequence 𝐷 = {(𝑋 (1) ,𝒚 (1)), ..., (𝑋 (𝑡) ,𝒚 (𝑡))}, DyMoE handles

the first data block like a conventional network. Specifically, it

minimizes the empirical loss,

arg min

𝜃1

1

|𝑋 (1) |

∑︁
𝑖,𝒙∈𝑋 (1)

L(𝒚 (1)
𝑖
, 𝑓𝜃1

(𝒙)) (4)

The loss function L is task dependent, and we use cross-entropy

loss for classification. For the second data block, we will add one

expert and gating vectors to the overall model. To compute the

output, we have

𝒉 = 𝑓{𝜃1,𝜃2 } (𝑥) = 𝛼1 𝑓𝜃1
(𝑥) + 𝛼2 𝑓𝜃2

(𝑥),

𝛼𝑖 =
𝑒𝑥𝑝 (𝑠 (𝒙,𝒈𝑖))

𝑒𝑥𝑝 (𝑠 (𝒙,𝒈1)) + 𝑒𝑥𝑝 (𝑠 (𝒙,𝒈2))
𝑖 ∈ {1, 2}

(5)

where 𝒈 are gating vectors associated with each expert, 𝑠 (·, ·)
is a similarity measure, and we use softmax on the similarities to

compute the importance of each expert for the input. Note that this

formulation is the same as existing MoE approaches, and the key

difference is that the number of experts dynamically increases as

more data arrive. Subsequent data blocks follow the same procedure,

where the output is computed as,

𝒉 = 𝑓{𝜃1,...,𝜃𝑡 } (𝒙) =
𝑡∑︁
𝑖=1

𝛼𝑖 𝑓𝜃𝑖 (𝒙), 𝛼𝑖 =
𝑒𝑥𝑝 (𝑠 (𝒙,𝒈𝑖))∑𝑡
𝑗=1

𝑒𝑥𝑝 (𝑠 (𝒙,𝒈𝑗))
(6)

KDD ’25, June 03–05, 2018, Woodstock, NY Kong et al.

GNN Layer 1

GNN Layer 2

GNN Layer 3 ⊗
⊗

⨁

G
ating

Vectors

Exp. 1 Exp. 2

⊗
⊗

⨁

G
ating

Vectors

Exp. 3

ℒ = ℒ!"# + 𝛾ℒ$% + 𝛿ℒ&$%DyMoE GNN training at time t=2

DyMoE GNN layer at time t=3, with sparse MoE (k=2)

Node representations
Block-guided
loss pipeline

Forward
pipeline

Inactive
expert

Active
expert

Node from datablock 2

MLP 1

Block-
guided

Att.1

Expert 1

MLP 2

Block-
guided
Att. 2

Expert 2

Expert 2 gate 1
0
1

Block-guided
Attention

𝑊' 𝑊(𝑊)
Att. Weight

𝑄
𝐾 𝑉

Block-guided attention reduce impact of future nodes

Figure 2: Pipeline of DyMoE GNN. Left: Each GNN layer has 𝑡 experts with individual attention and MLP weights. We compute
gating values from the node representations and the gating vectors. During training, we compute a block-guided loss between
the gating values and the data block index for correct expert selection. Top-Right: the graph block-guided loss assigns additional
weights to neighbor nodes and filters unrecognized nodes for experts. Bottom-Right: When a new data block arrives, we add a
new expert and a gating vector to the DyMoE module. In the sparse case, only the most important experts are used.

When training on a new data block 𝑡 , we only optimize the new

expert and all the gating vectors, specifically,

arg min

𝜃𝑡 ,{𝒈1 ...𝒈𝑡 }
L𝑐𝑙𝑠 ,L𝑐𝑙𝑠 =

1

|𝑋 |
∑︁
𝑖,𝒙∈𝑋

L(𝒚𝑖 , 𝑓{𝜃1,...,𝜃𝑡 } (𝒙)) (7)

Intuitively, this training scheme completely preserves the knowl-

edge obtained from previous data blocks. Ideally, when the gating

vectors are perfectly trained to distinguish which data block a par-

ticular data point belongs to, the model can fully recover the

output of that data point, eliminating forgetting.

Block-guided loss. While the experts can preserve learned

knowledge, the new experts are randomly initialized and start with

trivial predictions on all data. The model will rely on the existing

trained experts to make predictions, though they may carry old,

potentially suboptimal, knowledge regarding the new data block.

The gating vectors, including the new one, will tend to select the

old experts during training. The model can hence be trapped at the

local minimumwithout properly training the new dedicated experts.

Consequently, we need to inject the information about the correct

experts for our dynamically initialized newmodules. This is difficult

in conventional MoE because of the lack of supervision for correct

experts. However, in continual learning, data arrive in blocks, and

since experts are designed to handle individual data blocks, we
know exactly which expert a particular training data point should be
assigned to. We propose a block-guided loss to train the gating

vectors for correct expert assignment. Specifically, for an arbitrary

data point 𝒙 , in addition to its classification loss, we add a cross-

entropy loss between the gating values of all experts and the data

point’s corresponding data block index 𝑏 (𝒙). The computation is

valid because the number of experts equals the number of witnessed

data blocks. The loss forces an expert’s corresponding data and

gating vector to have large similarities, maximizing the likelihood of

using the correct expert to generate output for the data. Specifically,

L𝐵𝐿 (𝑥) = 𝐶𝐸 (𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝛼1 ...𝛼𝑡),𝑂𝑛𝑒𝐻𝑜𝑡 (𝑏 (𝒙), 𝑡)), 𝒙 ∈ 𝑋 (8)

where𝐶𝐸 is cross-entropy loss, 𝛼 is the gating values,𝑂𝑛𝑒𝐻𝑜𝑡 (𝑗, 𝑡)
generates a 𝑡-dimensional one-hot vector whose 𝑗-th entry is one.

Note that if we naively take𝑋 as the new samples in the most recent

data block𝑋 (𝑡)
, all of them will have the same data block index (the

last index), causing the model to always use the last expert. Hence,

we store a small sample set from each data block as the memory set,

𝑀 (𝑖) ⊂ 𝑋 (𝑖)
and |𝑀 (𝑖) | ≪ |𝑋 (𝑖) |, and take 𝑋 =

⋃𝑡−1

𝑖=1
𝑀 (𝑖) ∪ 𝑋 (𝑡)

,

so the model can adjust the gating values accordingly. The size of

memory set |𝑀 | = 𝑝 |𝑋 | where 𝑝 < 1. The memory set construction

details can be found in Appendix B.

Note that we only use such information during training, and the

model does not need the time information, or which block that a

data point belongs to, during inference, making the model perfectly

viable for difficult tasks such as class-incremental learning. The

overall training loss is,

L = L𝑐𝑙𝑠 + 𝛾L𝐵𝐿 (9)

where 𝛽 is a hyperparameter controlling the strength of regular-

ization. The combined framework essentially attempts to train a

data-block-dedicated classifier and out-of-distribution detectors for

every data block. The gating mechanism gives high weight to in-

distribution experts while minimizing the impact of out-distribution

experts. While this approach applies to arbitrary data modality, it

is particularly critical in the graph learning setting, where a node’s

neighbor might be from different data blocks and require different

processing. We elaborate more on this in Section 3.2. We theoret-

ically show the advantages of our proposed model over the Pa-

rameter Isolation (PI) [43] approach, a representative architectural

approach for continual learning.

Dynamic Mixture-of-Experts for Incremental Graph Learning KDD ’25, June 03–05, 2018, Woodstock, NY

Block 1

Block 2

Block 3

Target

Expert 1

Expert 2

Expert 3

Naïve

Interleaving

Incremental Graph Computation Graph
t=2

t=3

Block-guided

High Impact

Low Impact

Figure 3: The computation graphs of the same target node at
𝑡 = 3 by different approaches.

Theorem 1. For an arbitrary continual learning problem, suppose
a PI model obtains a cross-entropy classification loss L𝑃𝐼 , there exists
a parametrization of DyMoE that achieves cross-entropy classifica-
tion loss L𝐷𝑦 = L𝑃𝐼 . When the data sequence follows a mixture of
Gaussian distribution, we have L𝐷𝑦 ≤ L𝑃𝐼 .

The proof is in Appendix A. In the proof, we first show that

DyMoE is at least as powerful as PI. We then show under the

Gaussian Mixture assumption of the input data block sequence;

the DyMoE obtains strictly lower loss, which shows the model’s

superiority.

In practice, the memory set is very small to ensure efficiency,

but we jointly train on it with the full dataset from the new data

block, which can give the model a biased understanding of the

data distribution (i.e. most of the data are from the last data block).

Hence, we propose a data balancing training procedure, where,

after the regular training epochs, we collect the memory set for the

new data block, combine it with all previous training memory sets,

and train a few epochs on them to reflect the actual distribution

of the entire input sequence. We elaborate on the data balancing

training procedure in Appendix B.

3.2 Dynamic Mixture-of-Expert Graph Neural
Network

We then introduce fusing the DyMoE with a graph neural network.

Note that the DyMoE module does not assume any specific network

architectures, and a naive solution can treat a multi-layer GNN

as F . However, this ignores the unique property of graph data

in continual learning, where a target node’s neighbors are from

different data blocks. For example, in Figure 3, the target node

is from data block two but is later connected to nodes in block

three. The naive approach will assign expert two to process the

target node and all of its neighbors, but its neighbor nodes are

from blocks one and three, and expert two lacks the knowledge to

properly handle them, leading to compromised performance. Ideally,

a DyMoE model should assign neighbors to their corresponding

experts. Hence, we propose interleaving the DyMoE modules into

each GNN layer to correct this. We modify a transformer Graph

Convolution Layer [27] to the architecture of each expert layer.

Specifically,

𝑓
(𝑖)
𝜃𝑡

= 𝒉𝑖𝑣,𝑡 = 𝑀𝐿𝑃 (𝒉
(𝑖−1)
𝑣 +𝐴𝑡𝑡 (𝒉(𝑖−1)

𝑣 , {𝒉(𝑖−1)
𝑢 |𝑢 ∈ N (𝑣)})) (10)

where 𝐴𝑡𝑡 is the attention mechanism with target node’s feature as

query and neighbor nodes’ features as key and values, formally

𝐴𝑡𝑡 (𝒉,𝑈) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝒒𝐾√
𝑑
)𝑉

𝒒 =𝑊
𝑄
𝑡 𝒉, 𝐾 =𝑊𝐾

𝑡 𝑈 ,𝑉 =𝑊𝑉
𝑡 𝑈 , 𝑊

𝑄
𝑡 ,𝑊

𝐾
𝑡 ,𝑊

𝑉
𝑡 ∈ R𝑛×𝑛

(11)

where𝑊 s are the attention weights, and each expert has individual

MLP and attention weights. The interleaving DyMoE design can

be easily extended to other GNN architectures. The key difference

between this and naive approaches is that DyMoE naturally handles

the problem where neighbor nodes of the target node are from

different data blocks. As long as we properly train the gating vectors,

DyMoE can route each neighbor node to their corresponding expert

instead of the one corresponding to the target node. This approach

generates the most authentic representations.

Another critical trait of incremental graph learning is that new

data can change the existing graph’s overall topology. In the same

example, expert two is trained to handle data block two without

data from block three. However, after data block three arrives,

its data changes the neighborhood of the target node, meaning

that even we correctly assign the experts, we will not recover the

performance and output. Essentially, the modified topology in the

graph causes the old model to shift from its original prediction and

cause a performance decrease.

To overcome this issue, we observe that since the gating mech-

anism introduced in Section 3.1 can be used to distinguish which

data block a node is from, we can extend it to predict whether a

node occurs before an expert is added to the model. Correctly pre-

dicting this target allows us to suppress future nodes’ influence on

old experts and thus maximally preserve the old behavior. Specifi-

cally, we create an additional gating vector 𝒑𝑖 for each expert and

compute gating values 𝛽𝑢,𝑡 for node 𝑢 on expert 𝑡 as:

𝛽𝑢,𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝒑𝑡 · (𝑊 𝑃ℎ𝑢)), 𝑢 ∈ 𝐺 (12)

where𝑊 𝑃
is a linear projection shared by all experts in the same

layer and 𝛽 is independent of other experts, and it indicates whether

the node 𝑢 is incremented to the graph before expert 𝑡 is added

to the model. Since 𝛽 ∈ (0, 1), we can apply it to the attention

computation to reduce the impact of future nodes. Specifically, the

modified attention becomes,

𝐴𝑡𝑡𝑁 (𝒉,𝑈) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝒒𝐾√
𝑑
+ 𝑙𝑜𝑔(𝜷𝒕))𝑉 (13)

where 𝜷𝑡 is the corresponding gating values 𝛽𝑢,𝑡 of neighbor nodes
𝑢 ∈ 𝑈 . When 𝛽𝑢,𝑡 approaches 0, the attention to the corresponding

neighbor will become zero, and when 𝛽𝑢,𝑡 approaches 1, the neigh-

bor’s attention is computed as normal. Hence, when the gating

values are computed correctly, the attention mechanism can select

the nodes that reproduce the output like the graph is not incre-

mented with new neighbors. To properly train these gating vectors,

we can use a similar supervised signal as in the block-guided loss.

For a node 𝑢 and its corresponding data block 𝑏 (𝑢), we create a
multi-hot vector 𝑙𝑢 , whose first 𝑏 (𝑢) − 1 entries are zeros and last

KDD ’25, June 03–05, 2018, Woodstock, NY Kong et al.

𝑡 −𝑏 (𝑢) + 1 are ones, and compute the binary-cross-entropy loss as:

L𝐺𝐵𝐿 (𝑢) =
1

𝑡

𝑡∑︁
𝑗=1

𝐵𝑖𝑛𝑎𝑟𝑦𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝛽𝑢,𝑗 , 𝑙𝑖, 𝑗) (14)

We term this loss graph block-guided loss(GBL). The loss encour-

ages the gating value to be 1 if the experts are added after the node,

and 0 otherwise. Finally, we need to accommodate the block-guided

regularization loss to a more fine-grained version for the interleav-

ing design. Instead of using the target node’s corresponding data

block as the regularization target, we use each neighbor node’s own

corresponding data block as the target. And the final loss is,

L = L𝑐𝑙𝑠 +
𝑇∑︁
𝑖=1

∑︁
𝑣∈𝑉

𝛾L𝐵𝐿 (𝑣) + 𝛿L𝐺𝐵𝐿 (𝑣) (15)

where 𝛾 and 𝛿 are hyperparameters. This loss ensures that (a) when

the neighbor and the target nodes are from different data blocks,

we still want the most relevant expert to be of higher importance;

(b) when the correct expert is selected, the expert gets the input

that it recognizes from training (low impact from new neighbors,

and high impact from old/familiar neighbors).

3.3 Sparse Dynamic Mixture-of-Experts GNN
While the proposed DyMoEGNN allows effective knowledge preser-

vation and updates specialized for graph data, it incurs additional

computation cost for the dynamically increasing experts.Withmore

data blocks, we can have too many experts whose computational

burden overwhelms the performance benefits of the module. In-

spired by previous works on Sparse MoE [26], we introduce sparsity

into the system to improve its efficiency. To that end, we modify

Equation 6 so that only the experts with the top-k importance score

are used to generate predictions. Specifically,

(𝛼1 ...𝛼𝑡) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑇𝑜𝑝𝐾 (𝑠 (𝒙,𝒈0)...𝑠 (𝒙,𝒈𝑡)))

𝒉 =

𝑡∑︁
𝑖=1

𝒉𝑖 , 𝒉𝑖 =

{
𝛼𝑖 𝑓𝜃𝑖 (𝒙), if i in TopK

0, otherwise

(16)

Because we only use the top-k most essential experts, we do not

need to propagate gradients and compute the output of each ex-

pert, which significantly reduces the training and inference cost. A

complexity analysis can be found in Appendix C.

Since the last expert and gating are randomly initialized, the

model may ignore them because they produce meaningless predic-

tions at the beginning. To mitigate this, we follow Sparse MoE [26]

to tweak the gating values during training randomly so all experts

have proper selection chances, and the new experts and gates can

gradually learn to correctly predict the new data block. The details

about the load balancing can be found in Appendix C.

4 Related Work
Incremental Learning is extensively explored in the deep learn-

ing literature, including computer vision [17, 19, 21] and natural

language processing [14, 22, 29]. The approaches can be roughly

divided into three categories: Regularization-based methods con-

strain the deviation of the new model from the trained model to

retain knowledge [1, 17, 42]; Experience-Replay approaches add

a small subset of previous data blocks to the current training set

as a way to maintain previous knowledge [5, 21, 24]; Architec-
tural approaches maintain learned knowledge via assigning model

parameters to specific data [2, 7, 19]. Our method falls into the

architectural category. Some existing work also considers separate

modules for each data block [2, 25], but they focus on the task-

incremental scenario, while our method handles both that, and

the more challenging class-incremental case. MoE architecture has

been applied to solve continual learning problem [40], but it does

not use data block information to account for structural shift in

graph incremental learning, whereas our approach handles this

well.

Graph Incremental Learning. Different from i.i.d. data, graph

data suffer from distribution shifts in the incremental learning set-

ting. To overcome this novel challenge, architectural approaches

including, PI-GNN [43], FGN [34], and HPN [46], use newly ini-

tialized model components to learn new knowledge. Experience

replay approaches like DyGRAIN [16], ER-GNN [48], and Continual

GNN [35] explicitly retrains old nodes selected from graph-related

criterion. Regularization approaches such as TWP [20], Graph-

Sail [39], GPIL [31], and SEM [47] identify and minimize a regu-

larization loss to mediate structural shift and correct predictions.

MSCGL [4] combines architectural search and regularization to

preserve learned knowledge. However, because these models treat

old models as inseparable units, they ignore different interaction

types between data blocks. Meanwhile, our experts are dedicated

to individual data blocks, facilitating conditional adaptation to new

data.

5 Experiments
We aim to answer the following research questions in the exper-

imental evaluation: Q1: Does the proposed DyMoE framework

achieve good empirical performance while maintaining good effi-

ciency? Q2: How does the memory size impact the performance of

the model? Q3: The framework has several components, how does

each component impact its behavior? Q4: Does our training strat-
egy actually encourage dedicated experts? Implementation details

and data descriptions can be found in Appedix D.

5.1 Quantitative Results
To answer Q1, we evaluate the model performance with average

accuracy (AA) and average forget (AF) on class incremental datasets

(CoraFull [37], Reddit [11], Arxiv [12], DBLP-small [32]), and data

incremental datasets (Paper100M[12], Elliptic [37], Arxiv, DBLP-

small). We compared experience-replay baseline (ER-GNN [48]),

architectural baselines (LWF [19], PI-GNN [43]), and compound

baselines (continual-GNN (C-GNN) [35], RCL-CN [23], SSRM [28]).

We also compared with the pretrain baseline, where we only train

the model on the first date block and infer all future data blocks; the

online baseline, where we directly fine-tune the old model with new

data blocks; and the retrain baseline, where we retrain on all data

blocks whenever new data blocks arrive. We provide the results

of DyMoE module with a similar number of active parameters as

baseline methods and a larger version whose individual experts

are of same size as the baselines (DyMoE-L). They both have three

active experts (k=3). DyMoE represents a fair setting, where our

method’s and baselines’ parameter size and computation time are

Dynamic Mixture-of-Experts for Incremental Graph Learning KDD ’25, June 03–05, 2018, Woodstock, NY

Table 1: AA and AF of class incremental datasets. Bold represents best baseline and underline represents runner-up.

Dataset Metric Pretrain Online LWF ER-GNN SSRM RCL-CN PI-GNN C-GNN Retrain DyMoE DyMoE-L

Params. 4.3M 4.3M N/A 4.3M 4.3M 4.7M N/A 4.5M 4.3M 4.6M 8.7M

CoraFull

AA 17.58±1.59 34.37±0.69 38.61±1.28 64.57±0.60 70.71±0.59 67.37±0.62 70.92±0.60 73.98±0.61 83.07±0.79 76.59±0.58 78.16±0.61
AF 0.00±0.00 -14.64±0.79 -13.39±0.98 -11.92±0.57 -7.85±0.59 -11.78±0.57 -9.76±0.56 -9.28±0.54 -0.35±0.09 -7.92±0.54 -7.31±0.57

Reddit

AA 32.19±2.93 24.99±0.45 42.58±3.95 80.10±0.15 86.55±0.14 83.46±0.18 87.32±0.16 89.15±0.16 98.17±0.10 92.84±0.13 94.15±0.17
AF 0.00±0.00 -33.91±0.19 -29.60±1.19 -6.60±0.19 -2.60±0.20 -6.36±0.19 -4.36±0.23 -4.07±0.21 0.14±0.04 -2.60±0.19 -1.96±0.22

Arxiv

AA 27.91±2.47 34.79±3.76 40.21±2.63 55.39±1.82 62.43±1.83 58.20±1.81 62.72±1.84 65.18±1.83 72.19±0.20 68.33±1.80 70.15±1.84
AF 0.00±0.00 -32.74±2.37 -28.13±3.08 -21.06±1.75 -9.93±1.73 -20.81±1.73 -15.37±1.72 -14.44±1.75 0.47±0.18 -10.06±1.70 -8.82±1.74

DBLP

AA 46.03±1.89 47.52±3.63 50.48±3.30 54.81±3.03 56.56±3.06 55.80±3.03 56.35±3.02 57.62±3.04 65.59±1.27 57.75±3.01 58.08±3.05
AF 0.00±0.00 -17.41±2.86 -14.28±2.46 -8.45±0.86 -5.43±0.83 -8.27±0.85 -6.69±0.83 -6.39±0.84 0.47±0.04 -5.45±0.82 -5.07±0.85

Table 2: AA and AF of instance incremental datasets. Bold represents best baseline and underline represents runner-up.

Dataset Metric Pretrain Online LWF ER-GNN SSRM RCL-CN PI-GNN C-GNN Retrain DyMoE DyMoE-L

Params. 4.3M 4.3M N/A 4.3M 4.3M 4.7M N/A 4.5M 4.3M 4.6M 8.7M

Paper100M

AA 58.61±1.98 66.10±4.51 74.86±2.35 77.25±1.32 78.92±1.31 78.09±1.29 79.13±1.31 79.94±1.31 86.15±0.49 80.57±1.29 81.24±1.30
AF 0.00±0.00 -3.97±0.43 -2.69±1.92 -4.08±0.08 -2.03±0.10 -3.96±0.09 -3.05±0.07 -2.80±0.07 -0.35±0.04 -2.08±0.05 -1.65±0.07

Elliptic

AA 89.91±2.41 94.37±0.13 94.79±0.16 94.37±0.05 95.11±0.02 95.17±0.05 95.67±0.05 95.64±0.05 98.13±0.03 95.42±0.01 96.12±0.04
AF 0.00±0.00 -0.98±0.88 -1.96±0.14 -1.03±0.19 0.10±0.19 -0.78±0.20 -0.32±0.19 -0.26±0.19 0.14±0.02 -0.10±0.18 0.23±0.21

Arxiv

AA 59.81±2.32 69.05±0.39 70.06±0.64 66.39±0.21 67.52±0.19 67.33±0.23 68.24±0.20 68.24±0.23 73.01±0.10 68.21±0.19 68.56±0.23
AF 0.00±0.00 -2.31±0.18 -1.70±0.42 -0.23±0.37 0.41±0.36 -0.13±0.39 0.20±0.37 -0.01±0.37 0.34±0.29 -0.01±0.35 0.24±0.38

DBLP

AA 55.73±2.15 63.42±1.61 65.15±1.76 64.19±0.49 66.62±0.53 65.12±0.51 66.70±0.51 67.30±0.50 68.59±1.27 67.97±0.49 68.94±0.50
AF 0.00±0.00 -3.57±0.27 -2.78±0.85 -3.74±0.74 -2.51±0.76 -3.73±0.76 -3.07±0.74 -2.94±0.77 0.29±0.04 -2.39±0.73 -2.33±0.76

very close. We set the same memory node budget for all baselines,

the memory budget for each dataset can be found in Appendix D

We show the experiment results of class incremental setting

in Table 1, the Params. row shows the active parameters of the

baselines, LWF and PI-GNN’s parameter sizes can increase indefi-

nitely with the number of datablocks, hence we leave it as "N/A".

From the results, we can see our method significantly improves

over most existing baselines for both AA and AF. We reach an

average of 3.18% and 4.92% relative performance improvement in

AA across datasets for DyMoE and DyMoE-L, respectively. The

relative improvement is computed by

𝐴𝐴𝐷𝑦𝑀𝑜𝐸−𝐴𝐴𝐵1

𝐴𝐴𝐵1

, where𝐴𝐴𝐵1

is the best baseline result. While DyMoE does not reach unanimous

superiority on AF, we observe that SSRM, obtaining better AF, has

a much lower AA. DyMoE on average improves over SSRM on AA

by 6.78%, whereas the decrease in AF is less than 1%. Meanwhile,

DyMoE outperforms other baselines on AF by large margins. This

shows that DyMoE is a more effective trade-off between stability

and plasticity. The solid empirical results showed the superiority

of the DyMoE design and validated our theory. Comparing DyMoE

and DyMoE-L, we see that DyMoE-L achieves better AA and AF,

showing that a larger parameter size is more ideal to learn new

knowledge without interfering with the old. For the results of in-

stance incremental learning in Table 2, DyMoE still achieves better

results on most targets, including AA on paper100M, Elliptic, and

DBLP, while maintaining competitive results on AF. On datasets

0 5 10
Datablock Index

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

0 5 10
Datablock Index

0.20

0.15

0.10

0.05

0.00
Fo

rg
et

Retrain Ours RCL-CN SSRM PI-GNN

Figure 4: Performance progression on CoraFull dataset over
data blocks of our models and baselines.

Table 3: Training and inference time. (Ave. Seconds/Epoch).

CoraFull Arxiv Reddit

Train Inference Train Inference Train Inference

Finetune 2.41 1.49 3.59 8.96 8.79 4.57

SSRM 2.46 1.48 3.94 8.79 9.86 4.65

PIGNN 2.95 2.06 4.59 12.59 10.57 5.91

Retrain 6.47 1.52 17.18 8.94 35.18 4.63

DyMoE 2.47 1.55 4.17 8.86 10.28 4.75

DyMoE-L 2.94 2.14 4.68 13.09 13.91 6.02

where DyMoE did not achieve superior results, like Arxiv, we ob-

serve that even the most naive baseline (Online) achieved higher

KDD ’25, June 03–05, 2018, Woodstock, NY Kong et al.

Table 4: Ablation study of class incremental and instance
incremental datasets.

Reddit Cora-Full Paper100M

AA AF AA AF AA AF

DyMoE 92.84±0.13 -2.60±0.19 76.59±0.58 -7.92±0.54 80.57±1.29 -2.08±0.05
DyMoE-𝛾 = 0 91.38±0.58 -3.28±0.36 74.39±0.58 -7.91±1.12 78.21±1.53 -3.31±1.58
DyMoE-𝛿 = 0 89.94±1.28 -4.13±0.42 72.56±0.65 -8.47±0.58 78.49±1.47 -3.49±1.79
DyMoE-𝛾 = 0, 𝛿 = 0 90.18±0.58 -5.19±1.38 72.17±1.14 -10.62±1.20 76.12±0.39 -4.34±1.76

performance than other advanced continual learning methods. We

suspect that forgetting was not a severe issue in these datasets, and

most continual learning methods enforce a mechanism to maintain

the old knowledge, which "over-regularizes" the learning process,

causing underfitting and degraded performance.

In Table 3, we show the training and inference time of the base-

lines and our model. Compared to the retrain baseline (performance

upper-bound), both DyMoE and DyMoE-L cost significantly less

training time, as the method requires significantly less memory

data compared to the retrain method to maintain a competitive

performance. DyMoE has very close training and inference time

comparing to most effective baselines (SSRM, PIGNN), while achiev-

ing better results on most targets. Note that C-GNN is not compared

here because it theoretically has the same complexity as Finetune.

DyMoE-L, due to a higher parameter size, requires more computa-

tion costs during inference, however, DyMoE-L’s cost is comparable

to that of the architectural approach PIGNN, while maintaining

higher performance. Furthermore, we plot the AA and AF with

respect to the data block sequences in Figure 4. We observe that

DyMoE can align with the upper-bound retrain method in the first

few data blocks in AA, while demonstrating a large margin over

other baselines. SSRM achieves better AF, but we can see that in

the last few datablocks, DyMoE’s forgetting is better, meaning that

DyMoE can be more advantageous in maintaining knowledge in a

longer data block sequence.

5.2 Investigation of DyMoE
To answer Q2, we compare our method with three other baselines,

SSRM, PI-GNN, and C-GNN, that use memory nodes to help retain

old knowledge. An ideal incremental learning method should only

use a small memory size to obtain desirable performance. We plot

the results with different memory portion in Figure 6. From the

results, we can see that our approach achieves better performance

with the same size of memory, especially when we only have 0.01

memory portion of the training data block on the Reddit dataset.

Note that when the memory size approaches infinity, all methods

become retrained, and hence we are seeing a converging pattern

for the baselines. To answerQ3, we first investigate the effect of the
gating mechanism in DyMoE. To ensure that the nodes are routed

to the correct experts and experts only receive nodes that they are

familiar with during message-passing, we enforce block-guided loss

and graph block-guided loss to provide supervision for the gating

mechanism. We study the model performance when these losses

are absent from the training process. The results are in Table 4. We

observe that removing either 𝛾 or 𝛿 leads to performance degrada-

tion. When both losses are absent, we usually observe the lowest

1 3 5 7
k, Active Experts

0.60
0.65
0.70
0.75
0.80
0.85
0.90

Ac
cu

ra
cy

1 3 5 7
k, Active Experts

0.10

0.08

0.06

0.04

0.02

Fo
rg

et

CoraFull Reddit ArxivCIL

Figure 5: Performance change w.r.t. # of active experts.

0.05 0.10 0.15
Memory Portion

67.5

70.0

72.5

75.0

77.5

Ac
cu

ra
cy

CoraFull

0.025 0.050 0.075 0.100
Memory Portion

80

85

90

95
Reddit

Ours SSRM PI-GNN C-GNN

Figure 6: Model accuracy versus memory size for memory-
based models.

0.0 2.5 5.0 7.5 10.0 12.5
Datablock Index

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

= 5, = 5

0.0 2.5 5.0 7.5 10.0 12.5
Datablock Index

0.0

0.2

0.4

0.6

0.8

1.0 = 0, = 0

Expert-0
Expert-2

Expert-4
Expert-6

Expert-8
Expert-10

Expert-12

Figure 7: Experts individual performance on data blocks.
Each line plot represents an expert.

performance. This shows the necessity of directly using block in-

formation as supervision, which is largely ignored in most existing

approaches. We also observe that 𝛿 has a stronger impact on the

model behavior, as without it the model experiences performance

drop, showing the necessity of dedicated experts.

We then investigate how themodel reacts to the number of active

experts, and show the performance evolution as we increase the

number of experts in Table 5. We can see that the AA increases

from 𝑘 = 1 to 𝑘 = 5, while AF begins to decrease from 𝑘 = 3.

The divergence between AA and AF after 𝑘 = 3 shows that more

experts make learning easier, potentially because new experts can

borrow more knowledge from the old experts. Meanwhile, it is

more difficult to maintain old knowledge. We suspect that this is

because extra experts inevitably introduce noises and irrelevant

knowledge to old representations, causing forgetting.

Q4 validates whether our model and training procedure results

in specialized experts as designed. We evaluate the performance

Dynamic Mixture-of-Experts for Incremental Graph Learning KDD ’25, June 03–05, 2018, Woodstock, NY

of each expert on individual data blocks. In Figure 7, we can easily

observe that when trained with block-guided loss, the experts are

specialized, and they achieve high prediction accuracy for their

corresponding data blocks. When the block-guided loss is absent,

the experts fail to specialize, further demonstrating the necessity

of using block-information to guide training the MoE for continual

learning.

6 Conclusion, Limitations, and Future Work
In this paper, we identified the drawbacks of existing graph incre-

mental learning models and proposed the DyMoE module with a

sparse version to model different interaction types between data

blocks effectively and efficiently. However, we also acknowledge

that our model may have trouble locating the correct experts when

there are too many data blocks, resulting in compromised perfor-

mance. While this can be solved by periodic retraining, we plan

to extend our work to handle extremely long data sequences (over

1000 data blocks) in future work.

References
[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and

Tinne Tuytelaars. 2018. Memory aware synapses: Learning what (not) to forget.

In Proceedings of the European conference on computer vision (ECCV). 139–154.
[2] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. 2017. Expert gate:

Lifelong learning with a network of experts. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 3366–3375.

[3] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embed-

ding of Graphs: Unsupervised Inductive Learning via Ranking. In International
Conference on Learning Representations.

[4] Jie Cai, Xin Wang, Chaoyu Guan, Yateng Tang, Jin Xu, Bin Zhong, and Wenwu

Zhu. 2022. Multimodal Continual Graph Learning with Neural Architecture

Search. In Proceedings of the ACM Web Conference 2022 (Virtual Event, Lyon,

France) (WWW ’22). Association for Computing Machinery, New York, NY, USA,

1292–1300. doi:10.1145/3485447.3512176

[5] Arslan Chaudhry, Albert Gordo, Puneet Dokania, Philip Torr, and David Lopez-

Paz. 2021. Using hindsight to anchor past knowledge in continual learning. In

Proceedings of the AAAI conference on artificial intelligence, Vol. 35. 6993–7001.
[6] Yuanning Cui, Yuxin Wang, Zequn Sun, Wenqiang Liu, Yiqiao Jiang, Kexin Han,

and Wei Hu. 2023. Lifelong embedding learning and transfer for growing knowl-

edge graphs. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 37. 4217–4224.

[7] Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and Marcus

Rohrbach. 2020. Adversarial continual learning. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI
16. Springer, 386–402.

[8] Falih Gozi Febrinanto, Feng Xia, Kristen Moore, Chandra Thapa, and Charu Ag-

garwal. 2023. Graph lifelong learning: A survey. IEEE Computational Intelligence
Magazine 18, 1 (2023), 32–51.

[9] Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep,

Gertrude Liu, Jeremy B R Hayter, Richard Vickers, Charles Roberts, Jian

Tang, David Roblin, Tom L Blundell, Michael M Bronstein, and Jake P

Taylor-King. 2021. Utilizing graph machine learning within drug dis-

covery and development. Briefings in Bioinformatics 22, 6 (05 2021),

bbab159. doi:10.1093/bib/bbab159 arXiv:https://academic.oup.com/bib/article-

pdf/22/6/bbab159/41087478/bbab159.pdf

[10] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, 1263–1272.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. Advances in neural information processing systems 30
(2017).

[12] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. 2021. Open Graph Benchmark: Datasets

for Machine Learning on Graphs. arXiv:2005.00687 [cs.LG] https://arxiv.org/

abs/2005.00687

[13] Weiwei Jiang and Jiayun Luo. 2022. Graph neural network for traffic forecasting:

A survey. Expert Systems with Applications 207 (2022), 117921. doi:10.1016/j.eswa.
2022.117921

[14] Zixuan Ke and Bing Liu. 2022. Continual learning of natural language processing

tasks: A survey. arXiv preprint arXiv:2211.12701 (2022).

[15] Dongwan Kim and Bohyung Han. 2023. On the stability-plasticity dilemma of

class-incremental learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 20196–20204.

[16] Seoyoon Kim, Seongjun Yun, and Jaewoo Kang. 2022. DyGRAIN: An Incremental

Learning Framework for Dynamic Graphs.. In IJCAI. 3157–3163.
[17] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume

Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka

Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and

Raia Hadsell. 2017. Overcoming catastrophic forgetting in neural networks. Pro-
ceedings of the National Academy of Sciences 114, 13 (2017), 3521–3526. doi:10.1073/
pnas.1611835114 arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.1611835114

[18] Xiaoyu Kou, Yankai Lin, Shaobo Liu, Peng Li, Jie Zhou, and Yan Zhang. 2020.

Disentangle-based Continual Graph Representation Learning. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
2961–2972.

[19] Zhizhong Li and Derek Hoiem. 2018. Learning without Forgetting. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 40, 12 (2018), 2935–2947.

doi:10.1109/TPAMI.2017.2773081

[20] Huihui Liu, Yiding Yang, and Xinchao Wang. 2021. Overcoming catastrophic

forgetting in graph neural networks. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 35. 8653–8661.

[21] David Lopez-Paz and Marc' Aurelio Ranzato. 2017. Gradient Episodic Memory

for Continual Learning. In Advances in Neural Information Processing Systems,
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and

R. Garnett (Eds.), Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/

paper_files/paper/2017/file/f87522788a2be2d171666752f97ddebb-Paper.pdf

[22] Fei Mi, Liangwei Chen, Mengjie Zhao, Minlie Huang, and Boi Faltings. 2020. Con-

tinual learning for natural language generation in task-oriented dialog systems.

arXiv preprint arXiv:2010.00910 (2020).
[23] Appan Rakaraddi, Lam Siew Kei, Mahardhika Pratama, and Marcus De Carvalho.

2022. Reinforced continual learning for graphs. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management. 1666–1674.

[24] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gre-

gory Wayne. 2019. Experience Replay for Continual Learning. In Ad-
vances in Neural Information Processing Systems, H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Cur-

ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2019/file/

fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf

[25] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James

Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. 2016. Pro-

gressive neural networks. arXiv preprint arXiv:1606.04671 (2016).
[26] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,

Geoffrey Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The

sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 (2017).
[27] Yunsheng Shi, Zhengjie Huang, Wenjin Wang, Hui Zhong, Shikun Feng, and

Yu Sun. 2020. Masked Label Prediction: Unified Massage Passing Model for

Semi-Supervised Classification. CoRR abs/2009.03509 (2020). arXiv:2009.03509

https://arxiv.org/abs/2009.03509

[28] Junwei Su, Difan Zou, Zijun Zhang, and Chuan Wu. 2023. Towards robust graph

incremental learning on evolving graphs. In International Conference on Machine
Learning. PMLR, 32728–32748.

[29] Jingyuan Sun, Shaonan Wang, Jiajun Zhang, and Chengqing Zong. 2020. Distill

and replay for continual language learning. In Proceedings of the 28th international
conference on computational linguistics. 3569–3579.

[30] Li Sun, Junda Ye, Hao Peng, Feiyang Wang, and S Yu Philip. 2023. Self-supervised

continual graph learning in adaptive riemannian spaces. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 37. 4633–4642.

[31] Zhen Tan, Kaize Ding, Ruocheng Guo, and Huan Liu. 2022. Graph few-shot class-

incremental learning. In Proceedings of the fifteenth ACM international conference
on web search and data mining. 987–996.

[32] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Ar-

netMiner: extraction and mining of academic social networks. In Proceedings
of the 14th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (Las Vegas, Nevada, USA) (KDD ’08). Association for Computing

Machinery, New York, NY, USA, 990–998. doi:10.1145/1401890.1402008

[33] Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. 2022. Three types

of incremental learning. Nature Machine Intelligence 4, 12 (2022), 1185–1197.
[34] Chen Wang, Yuheng Qiu, Dasong Gao, and Sebastian Scherer. 2022. Lifelong

graph learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 13719–13728.

[35] Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. 2020. Streaming graph neu-

ral networks via continual learning. In Proceedings of the 29th ACM international
conference on information & knowledge management. 1515–1524.

[36] Shoujin Wang, Liang Hu, Yan Wang, Xiangnan He, Quan Z. Sheng, Mehmet A.

Orgun, Longbing Cao, Francesco Ricci, and Philip S. Yu. 2021. Graph Learning

based Recommender Systems: A Review. arXiv:2105.06339 [cs.IR] https://arxiv.

org/abs/2105.06339

https://doi.org/10.1145/3485447.3512176
https://doi.org/10.1093/bib/bbab159
https://arxiv.org/abs/https://academic.oup.com/bib/article-pdf/22/6/bbab159/41087478/bbab159.pdf
https://arxiv.org/abs/https://academic.oup.com/bib/article-pdf/22/6/bbab159/41087478/bbab159.pdf
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2005.00687
https://doi.org/10.1016/j.eswa.2022.117921
https://doi.org/10.1016/j.eswa.2022.117921
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.1611835114
https://doi.org/10.1109/TPAMI.2017.2773081
https://proceedings.neurips.cc/paper_files/paper/2017/file/f87522788a2be2d171666752f97ddebb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f87522788a2be2d171666752f97ddebb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://arxiv.org/abs/2009.03509
https://arxiv.org/abs/2009.03509
https://doi.org/10.1145/1401890.1402008
https://arxiv.org/abs/2105.06339
https://arxiv.org/abs/2105.06339
https://arxiv.org/abs/2105.06339

KDD ’25, June 03–05, 2018, Woodstock, NY Kong et al.

[37] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio

Bellei, Tom Robinson, and Charles E Leiserson. 2019. Anti-money laundering in

bitcoin: Experimenting with graph convolutional networks for financial forensics.

arXiv preprint arXiv:1908.02591 (2019).
[38] Man Wu, Xin Zheng, Qin Zhang, Xiao Shen, Xiong Luo, Xingquan Zhu, and

Shirui Pan. 2024. Graph Learning under Distribution Shifts: A Comprehensive

Survey on Domain Adaptation, Out-of-distribution, and Continual Learning.

arXiv preprint arXiv:2402.16374 (2024).
[39] Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, and Mark

Coates. 2020. GraphSAIL: Graph Structure Aware Incremental Learning for

Recommender Systems. In Proceedings of the 29th ACM International Conference
on Information & Knowledge Management (Virtual Event, Ireland) (CIKM ’20).
Association for Computing Machinery, New York, NY, USA, 2861–2868. doi:10.

1145/3340531.3412754

[40] Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You

He. 2024. Boosting continual learning of vision-language models via mixture-of-

experts adapters. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 23219–23230.

[41] Qiao Yuan, Sheng-Uei Guan, Pin Ni, Tianlun Luo, Ka Lok Man, Prudence Wong,

and Victor Chang. 2023. Continual graph learning: A survey. arXiv preprint
arXiv:2301.12230 (2023).

[42] Friedemann Zenke, Ben Poole, and Surya Ganguli. 2017. Continual learning

through synaptic intelligence. In International conference on machine learning.
PMLR, 3987–3995.

[43] Peiyan Zhang, Yuchen Yan, Chaozhuo Li, SenzhangWang, Xing Xie, Guojie Song,

and Sunghun Kim. 2023. Continual learning on dynamic graphs via parame-

ter isolation. In Proceedings of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 601–611.

[44] Xikun Zhang, Dongjin Song, Yixin Chen, and Dacheng Tao. 2024. Topology-

aware Embedding Memory for Continual Learning on Expanding Networks. In

Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 4326–4337.

[45] Xikun Zhang, Dongjin Song, and Dacheng Tao. 2022. Cglb: Benchmark tasks for

continual graph learning. Advances in Neural Information Processing Systems 35
(2022), 13006–13021.

[46] Xikun Zhang, Dongjin Song, and Dacheng Tao. 2023. Hierarchical Prototype

Networks for Continual Graph Representation Learning. IEEE Transactions on
Pattern Analysis and Machine Intelligence 45, 4 (2023), 4622–4636. doi:10.1109/
TPAMI.2022.3186909

[47] Xikun Zhang, Dongjin Song, and Dacheng Tao. 2023. Ricci curvature-based graph

sparsification for continual graph representation learning. IEEE Transactions on
Neural Networks and Learning Systems (2023).

[48] Fan Zhou and Chengtai Cao. 2021. Overcoming catastrophic forgetting in graph

neural networks with experience replay. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 35. 4714–4722.

A Proof of Theorem 1
We restate Theorem 1 for completeness,

Theorem 1. For an arbitrary continual learning problem, suppose
a PI model obtains a cross-entropy classification loss L𝑃𝐼 , there exists
a parametrization of DyMoE that achieves cross-entropy classifica-
tion loss L𝐷𝑦 = L𝑃𝐼 . When the data sequence follows a mixture of
Gaussian distribution, we have L𝐷𝑦 ≤ L𝑃𝐼 .

It is easy to see that DyMoE is at least as powerful as PI since

we can parameterize all gating vectors with the same value; hence,

the weights of all experts are the same, which makes the final

output essentially a summation of each expert’s output. In this case,

DyMoE degenerates to PI. We then prove that under the Gaussian

Mixture assumption of the data blocks, DyMoE achieves lower loss

and, hence, is strictly more powerful than PI.

Proof. Consider the case with two data blocks generated from

Gaussian Distributions, 𝑋1 = N(𝝁1, 𝜎
2𝐼), and 𝑋2 = N(𝝁2, 𝜎

2𝐼).
For simplicity, we assume the same variance across coordinates

and the probability of data from each distribution is the same. Let

the distance between two distributions be 𝐵. The labels of data

are generated depending on their distance from the mean of their

coorresponding distribution, specifically, if 𝒙 ∼ 𝑋1,

𝑦 =

{
0, if | |𝒙 − 𝝁1 | | ≤ 𝑑
1, otherwise

(17)

and if 𝑥 ∼ 𝑋1,

𝑦 =

{
2, if | |𝒙 − 𝝁2 | | ≤ 𝑑
3, otherwise

(18)

where 2𝑑 ≤ 𝐵 is a threshold distance to determine the data la-

bels. This is a practical assumption for a mixture of two Gaussian

distributions.

We then consider the procedure of Parameter Isolation (PI) and

our proposed method. PI first trains a model 𝑓1 (𝑥) on 𝑋1 and then

trains a model 𝑓2 (𝑥) on 𝑋2, both 𝑓1 and 𝑓2 are in 𝑅4
for the four

target classes. Hence, when making predictions, we have the logits

to be:

𝑦 = softmax(𝑓1 (𝑥) + 𝑓2 (𝑥)) (19)

Since our approach can initialize a network with the same architec-

ture, we can have the same network and parameters as the ones in

PI, and the predictions from our model are:

𝑦 = softmax(𝛼1 𝑓1 (𝒙) + 𝛼2 𝑓2 (𝒙)),

𝛼𝑖 =
𝑒𝑥𝑝 (− | |𝒙−𝒈𝑖 | |2

2𝜎2
)

𝑒𝑥𝑝 (− | |𝒙−𝒈1 | |2
2𝜎2

) + 𝑒𝑥𝑝 (− | |𝒙−𝒈2 | |2
2𝜎2

)

(20)

Here, we use the negative of the distance normalized by the variance

as the similarity measure between the input and the gating vectors.

This is a valid and tractable choice as variance can be estimated by

batch normalization. Note that in the first data block, we directly set

the gating vector to the empirical mean of the input, 𝒈1 = 𝒙1 ≈ 𝝁1.

In the second data block, the block-guided loss solves the problem

min

𝒈2

1

𝑁

𝑁∑︁
𝑖=1

𝑠 (𝒙𝑖 ,𝒈2) (21)

https://doi.org/10.1145/3340531.3412754
https://doi.org/10.1145/3340531.3412754
https://doi.org/10.1109/TPAMI.2022.3186909
https://doi.org/10.1109/TPAMI.2022.3186909

Dynamic Mixture-of-Experts for Incremental Graph Learning KDD ’25, June 03–05, 2018, Woodstock, NY

which is minimized by 𝒈2 = 𝝁2. We can then rewrite the prediction

of the model:

𝑦 = softmax(𝛼1 𝑓1 (𝒙) + 𝛼2 𝑓2 (𝒙)),

𝛼𝑖 =
𝑒𝑥𝑝 (− | |𝒙−𝝁𝑖 | |2

2𝜎2
)

𝑒𝑥𝑝 (− | |𝒙−𝝁1 | |2
2𝜎2

) + 𝑒𝑥𝑝 (− | |𝒙−𝝁2 | |2
2𝜎2

)

(22)

To show that our model achieves lower loss on this task, we only

need to consider the expected loss on the𝐷1 as the two distributions

are symmetric. We divide the problem into two cases | |𝒙 − 𝝁1 | | ≤ 𝑑 ,
when the input is close to the distribution mean, and | |𝒙 − 𝝁1 | | > 𝑑
when the input is farther away.

For | |𝒙 − 𝝁1 | | ≤ 𝑑 , the correct label is 0. We consider the cross-

entropy loss of PI,

L𝑃𝐼 = −𝑙𝑜𝑔(𝑓1 (𝒙)0
𝑓1 (𝒙)0 + 𝑓1 (𝒙)1 + 𝑓2 (𝒙)2 + 𝑓2 (𝒙)3

)

= −𝑙𝑜𝑔(𝛼1 𝑓1 (𝒙)0
𝛼1 𝑓1 (𝒙)0 + 𝛼1 𝑓1 (𝒙)1 + 𝛼1 𝑓2 (𝒙)2 + 𝛼1 𝑓2 (𝒙)3

)
(23)

and the cross-entropy loss of our method

L𝐷𝑦 = −𝑙𝑜𝑔(𝛼1 𝑓1 (𝒙)0
𝛼1 𝑓1 (𝒙)0 + 𝛼1 𝑓1 (𝒙)1 + 𝛼2 𝑓2 (𝒙)2 + 𝛼2 𝑓2 (𝒙)3

) (24)

since | |𝒙 − 𝝁1 | | ≤ 𝑑 ≤ 𝐵 − 𝑑 ≤ ||𝒙 − 𝝁2 | |, meaning that 𝛼1 ≥ 𝛼2,

and we have L𝐷𝑦 ≤ L𝑃𝐼 . Since cross-entropy is monotonic, we

can obtain the minimum of L𝑃𝐼 − L𝐷𝑦 at | |𝒙 − 𝝁1 | | = 𝑑 and

| |𝒙 − 𝝁2 | | = 𝐵 − 𝑑 . Let the minimum be ΔL𝑐𝑙𝑜𝑠𝑒 . Note ΔL𝑐𝑙𝑜𝑠𝑒
increases as 𝑑 increases and 𝜎 decreases.

For | |𝒙 − 𝝁1 | | > 𝑑 , the correct label is 1. Let𝑀 be the maximum

absolute value that the neural network 𝑓2 output for a logit, that is

|𝑓2 (𝑥)𝑦 | ≤ 𝑀 . Then, the maximum possible loss is −𝑓2 (𝑥)1 + 𝑙𝑜𝑔(𝐶 ·
𝑒𝑥𝑝 (𝑀)) = 𝑙𝑜𝑔(𝐶) + 2𝑀 , where𝐶 = 4, the number of classes. Since

logits of PI and our method is bounded by the same𝑀 , we have the

maximum possible loss difference to be

|ΔL𝑓 𝑎𝑟 | = 4𝑀 + 2𝑙𝑜𝑔𝐶 (25)

We now developed a lower bound for the loss difference when 𝒙
is close to 𝝁1 and an upper bound for the loss difference when x

is far from 𝝁2, we then compute the probability of each case using

Gaussian tail bound.

𝑃 [𝒙−𝝁1 > 𝑑] ≤ 𝑒𝑥𝑝 (− 𝑑2

2𝜎2
), 𝑃 [𝒙−𝝁1 ≤ 𝑑] ≥ 1−𝑒𝑥𝑝 (− 𝑑2

2𝜎2
) (26)

Then the upper bound of the difference in expected loss when 𝑥 is

far is:

|Δ𝐸𝑓 𝑎𝑟 | ≤ (4𝑀 + 2𝑙𝑜𝑔𝐶) · 𝑒𝑥𝑝 (− 𝑑2

2𝜎2
) (27)

The lower bound of the expected loss when 𝑥 is close is:

Δ𝐸𝑐𝑙𝑜𝑠𝑒 ≥ ΔL𝑐𝑙𝑜𝑠𝑒 · (1 − 𝑒𝑥𝑝 (−
𝑑2

2𝜎2
)) (28)

Taking the ratio:

|Δ𝐸𝑓 𝑎𝑟 |
Δ𝐸𝑐𝑙𝑜𝑠𝑒

≤
(4𝑀 + 2𝑙𝑜𝑔𝐶) · 𝑒𝑥𝑝 (− 𝑑2

2𝜎2
)

ΔL𝑐𝑙𝑜𝑠𝑒 · (1 − 𝑒𝑥𝑝 (− 𝑑2

2𝜎2
))

(29)

As
𝑑
𝜎 increases, the ratio approaches zero, hence we have the overall

expected loss difference,

Δ𝐸 = Δ𝐸𝑐𝑙𝑜𝑠𝑒 + |Δ𝐸𝑓 𝑎𝑟 | ≥ Δ𝐸𝑐𝑙𝑜𝑠𝑒 − |Δ𝐸𝑓 𝑎𝑟 | ≥ 0 (30)

making the overall loss difference positive, and our approach leads

to lower loss in this case. □

B Memory Set Construction
DyMoE utilizes memory sets to train gating vectors for correct data

routing. To construct the memory, we first set a memory budget

0 < 𝑝 < 1, representing the portion of the full data block 𝑋 that

will be kept as memory set𝑀 , that is

|𝑀 | = 𝑝 |𝑋 | (31)

Usually, 𝑝 is a small value (𝑝 < 0.05) to ensure the efficiency. In-

spired by ER-GNN [48], we use a sample’s representativeness to

select memory nodes. Let𝑋𝑐 be all samples in𝑋 that has class 𝑐 , we

collect their learned representation before the final logit prediction

layer, 𝐹𝑐 = 𝑓 (𝑥) |𝑥 ∈ 𝑋𝑐 . We then compute the representative vector

𝒙𝑐 as

𝒙𝑐 =
1

|𝐹 |
∑︁
𝒄∈𝐹

𝒄 (32)

Then representativeness of sample 𝒙 is determined by the norm

distance between the sample representation and the representative

vector, 𝑠 = −||𝑓 (𝒙) − 𝒙𝑐 | |. We sort this value in 𝑋𝑐 , and pick the

largest 𝑘𝑐 samples to add to the memory set. 𝑘𝑐 is determined by

the class distribution.

𝑘𝑐 =
|𝑋𝑐 |
|𝑋 | (33)

A benefit of this construction strategy is that the resulting memory

set

⋃
𝑖 𝑀

(𝑖)
reflects the actual class distribution but with much less

data. Hence, we can use it to balance the data during training. The

training is divided into two stages, in the first stage, the model is

trained with

⋃𝑡−1

𝑖=1
𝑀 (𝑖) ∪ 𝑋 (𝑡)

, so that the last expert can learn

fine-grained information from the full new data block. Then, we

collect memory for 𝑋 (𝑡)
as described above and train the model

with

⋃𝑡
𝑖=1

𝑀 (𝑖)
, this teaches the gating mechanism the correct class

distribution of the current graph.

C Details about Sparse DyMoE
Since DyMoE in each individual timestamp can be interpreted as

a conventional static sparse MoE model, we can apply the same

strategy [26] to ensure experts get a good chance of being selected,

including the randomly and newly initialized ones. Specifically,

(𝛼1, ..., 𝛼𝑡) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐾𝑒𝑒𝑝𝑇𝑜𝑝𝐾 (𝐻 (𝒙,𝒈1, 𝒒1), ..., 𝐻 (𝒙,𝒈𝑡 , 𝒒𝑡))
𝐻 (𝑥, 𝑔𝑖 , 𝑞𝑖) = 𝑠 (𝒙,𝒈𝑖) + 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑁𝑜𝑟𝑚𝑎𝑙 () · 𝑆𝑜 𝑓 𝑡𝑝𝑙𝑢𝑠 (𝑠 (𝒙, 𝒒𝑖))

𝐾𝑒𝑒𝑝𝑇𝑜𝑝𝐾 (𝑣1, ..., 𝑣𝑡) =
{
𝑣𝑖 , if i in TopK

− inf, otherwise

(34)

We add a noise term whose magnitude is determined by another

learnable noise vector.

Modern MoE designs also employ load balancing design to en-

sure each experts get similar number of samples. However, we

observe that such a strategy is not bringing performance boost to

our methods, potentially because the supervised data-block signal

already handles the load balancing issue.

KDD ’25, June 03–05, 2018, Woodstock, NY Kong et al.

D Experiment Details
D.1 Implementation Details
The repository for implementation can be found at the follow-

ing https://github.com/amazon-science/dymoe-graph-incremental-

learning. The model is implemented in PyTorch and DGL, and all

experiments are conducted on 1 Nvidia A100 80GB GPU. We repeat

the experiment 5 times using different random seeds and report

the mean and standard deviation. We uniformly use a fan-out of 10

to extract subgraphs from each target node. The hyperparameters

used during training are shown in Table 5 and Table 6, where the

curly bracket represents the hyperparameters for searching, and

the hyperparameters selected are marked in bold. Memory size is

the per data block memory size, and it is a special hyperparameter

in the continual learning setting because as it increases, all methods

converge to the retrain method, which is usually the upper bound

of all continual learning methods. We set a uniform ratio 𝑝 of the

training dataset for all methods use memory set.

D.2 Dataset Details
The dataset statistics are shown in Table 7. We collect data from aca-

demic graphs (Arxiv, DBLP, Paper100M, CoraFull), social networks

(Reddit), and BlockChain networks (Elliptic) to show that our model

handles a wide range of datasets. We describe the construction of

each dataset as follows and includes the number of new nodes and

edges in Figure 8 and 9. We use the provided train/valid/test split

from the dataset source. If the source does not have established

split, we use 60/20/20 train valid test split.

ArXiv: Arxiv academic citation network from Open Graph

Benchmark (OGB) [12] contains arxiv articles and the citation infor-

mation between articles. For instance incremental learning setting,

we use the first 25 timestamps in the original arxiv dataset as the

first data block, as they contain significantly less data. We then split

the rest of the data by year, and data in each forms a data block. For

class incremental learning setting, we split the data into 8 blocks

each contains 5 classes.

DBLP: DBLP is an academic network from the DBLP website

containing computer science academic paper, with citation infor-

mation [32]. We follow Zhang et al. [43] to sample 20000 nodes

with 9 classes and 75706 edges from DBLP full data, we split it into

data blocks according to the timestamps. For the class incremental

setting, we split the 9 classes into 5 data block each containing 2

classes, except for the last one with only 1 class.

Paper100M: Paper100M is a citation network extracted from

Microsoft Academic Graph by OGB [12]. We follow Zhang et al.

[43] to sample 12 classes from the year 2009 to the year 2019 from

Paper100M full data and we split it into tasks according to the

timestamps.

CoraFull: CoraFull is a co-citation academic network, where

nodes are papers, and the two nodes are connected if they are co-

cited by other papers [3]. We use the provided CoraFull data from

DGL, and split its 70 classes into 14 5-classes data blocks for class

incremental learning.

Reddit: The Reddit dataset contains Reddit posts as nodes, and
two nodes are connected by edges if they are posted by the same

user [11]. We use the provided Reddit data from DGL, and split its

40 classes into 8 5-classes data blocks for class incremental learning.

Elliptic: The Elliptic dataset is a bitcoin transaction network,

where each node represents a transaction, and each edge denotes

money flow [37]. Its nodes have timestamps evenly spaced with an

interval about two weeks. We use the original timestamp from the

dataset for instance-incremental learning.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://github.com/amazon-science/dymoe-graph-incremental-learning
https://github.com/amazon-science/dymoe-graph-incremental-learning

Dynamic Mixture-of-Experts for Incremental Graph Learning KDD ’25, June 03–05, 2018, Woodstock, NY

Table 5: Hyperparameters for class incremental learning.

Arxiv-CIL DBLP-CIL CoraFull Reddit

Learning Rate 0.0001

Weight Decay {0.01, 0.001, 0.0001}
Embedding Dimension 128

Epochs 40

Balancing Epochs 10

𝛾 {0.01, 0.1, 1, 5} {0.01, 0.1, 1, 5} {0.01, 0.1, 1, 5} {0.01, 0.1, 1, 5}
𝛿 5

𝑝 0.01 0.01 0.05 0.01

batch size 128

Table 6: Hyperparameters for instance incremental learning.

Arxiv-IIL DBLP-IIL Paper100M Elliptic

Learning Rate 0.0001

Weight Decay 0.001

Embedding Dimension 128

Epochs 40

Balancing Epochs 5

𝛾 {0.01, 0.1, 1, 5} {0.01, 0.1, 1, 5} {0.01, 0.1, 1, 5} {0.01, 0.1, 1, 5}
𝛿 5

𝑝 0.01

batch size 128

Table 7: Dataset statistics.

#. Nodes #. Edges #. Classes #. Data blocks #. Classes per block

CoraFull 19793 126842 70 14 5

Arxiv-CIL 169343 2332486 40 8 5

Reddit 232965 114615892 41 9 5

DBLP-small-CIL 20000 302862 9 5 2

Paper100M-small 49459 217420 12 11 NA

Arxiv-IIL 169343 2332486 40 11 NA

DBLP-small-IIL 20000 302826 9 24 NA

Elliptic 203769 468710 2 49 NA

KDD ’25, June 03–05, 2018, Woodstock, NY Kong et al.

0 5 10
Datablock Index

500

1000

1500

2000

Ne
w

No
de

s

cora_full

0.0 2.5 5.0 7.5
Datablock Index

10000

20000

30000

40000

50000

Ne
w

No
de

s

reddit

0 2 4 6
Datablock Index

10000

15000

20000

25000

30000

Ne
w

No
de

s

arxiv_cil

0 2 4
Datablock Index

2500

5000

7500

10000

12500

Ne
w

No
de

s

dblp_cil

0 5 10
Datablock Index

10000

20000

30000

40000

Ne
w

No
de

s

arxiv

0 5 10
Datablock Index

0

2500

5000

7500

10000

12500

Ne
w

No
de

s

paper100M

0 10 20
Datablock Index

0

500

1000

1500

Ne
w

No
de

s

dblp

0 20 40
Datablock Index

2000

4000

6000

8000

Ne
w

No
de

s

elliptic

Figure 8: Number of new nodes per data block.

0 5 10
Datablock Index

5000

10000

15000

Ne
w

Ed
ge

s

cora_full

0 5
Datablock Index

0.5

1.0

1.5

2.0

2.5

Ne
w

Ed
ge

s

1e7 reddit

0 5
Datablock Index

200000

400000

600000

Ne
w

Ed
ge

s

arxiv_cil

0 2 4
Datablock Index

40000

60000

80000

100000

120000

140000

Ne
w

Ed
ge

s

dblp_cil

0 5 10
Datablock Index

0

200000

400000

600000

800000

Ne
w

Ed
ge

s

arxiv

0 5 10
Datablock Index

0

20000

40000

60000

80000

Ne
w

Ed
ge

s

paper100M

0 10 20
Datablock Index

0

10000

20000

30000

Ne
w

Ed
ge

s

dblp

0 20 40
Datablock Index

5000

10000

15000

Ne
w

Ed
ge

s

elliptic

Figure 9: Number of new edges per data block.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Dynamic Mixture-of-Experts Graph Neural Network
	3.1 Dynamic Mixture-of-Experts Module
	3.2 Dynamic Mixture-of-Expert Graph Neural Network
	3.3 Sparse Dynamic Mixture-of-Experts GNN

	4 Related Work
	5 Experiments
	5.1 Quantitative Results
	5.2 Investigation of DyMoE

	6 Conclusion, Limitations, and Future Work
	References
	A Proof of Theorem 1
	B Memory Set Construction
	C Details about Sparse DyMoE
	D Experiment Details
	D.1 Implementation Details
	D.2 Dataset Details

