2508.09974v1 [cs.LG] 13 Aug 2025

arXiv

Dynamic Mixture-of-Experts for Incremental Graph Learning

Lecheng Kong Theodore Vasiloudis Seongjun Yun
jkong@amazon.com thvasilo@amazon.com sjyun@amazon.com
Amazon Amazon Amazon

Han Xie Xiang Song
hanxie@amazon.com xiangsx@amazon.com
Amazon Amazon

Abstract

Graph incremental learning is a learning paradigm that aims to
adapt trained models to continuously incremented graphs and data
over time without the need for retraining on the full dataset. How-
ever, regular graph machine learning methods suffer from cata-
strophic forgetting when applied to incremental learning settings,
where previously learned knowledge is overridden by new knowl-
edge. Previous approaches have tried to address this by treating the
previously trained model as an inseparable unit and using regular-
ization, experience replay, and parameter isolation to maintain old
behaviors while learning new knowledge. These approaches, how-
ever, do not account for the fact that previously acquired knowledge
at different timestamps contributes differently to learning new tasks.
Some prior patterns can be transferred to help learn new data, while
others may deviate from the new data distribution and be detrimen-
tal. Moreover, in the graph context, a node’s receptive field contains
neighbors from different data blocks, requiring variable process-
ing, and an inseparable unit fails to account for such variability. To
address this, we propose a dynamic mixture-of-experts (DyMoE) ap-
proach for incremental learning. Specifically, a DyMoE GNN layer
adds new expert networks specialized in modeling the incoming
data blocks. We design a customized regularization loss that utilizes
data sequence information so existing experts can maintain their
ability to solve old tasks while helping the new expert learn the
new data effectively. As the number of data blocks grows over time,
the computational cost of the full mixture-of-experts (MoE) model
increases. To address this, we introduce a sparse MoE approach,
where only the top-k most relevant experts make predictions, signif-
icantly reducing the computation time. Our model achieved 4.92%
relative accuracy increase compared to the best baselines on class
incremental learning, showing the model’s exceptional power.

CCS Concepts

« Computing methodologies — Machine learning.

Keywords
Graph Neural Network, Continual Learning, Mixture of Experts.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD °25, Woodstock, NY

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:

Lecheng Kong, Theodore Vasiloudis, Seongjun Yun, Han Xie, and Xiang
Song. 2018. Dynamic Mixture-of-Experts for Incremental Graph Learning.
In Proceedings of Knowledge Discovery and Data Mining (KDD °25). ACM,
New York, NY, USA, 14 pages. https://doi.org/XXXXXXX XXXXXXX

1 Introduction

Graph neural networks (GNN) achieved great success in modeling
graph data and have many applications, such as recommender sys-
tems [36], drug discovery [9], and traffic forecasting [13]. However,
in many real-world settings, the graph is dynamic, starting small
and expanding over time, and the training data arrive as sequences
of data blocks with timestamps. Naive approaches train on the
full graph whenever new data appears, which incurs expensive
computational costs due to repetitive training on old data. On the
other hand, simply finetuning conventional GNNs on the new data
leads to catastrophic forgetting, where the model’s prediction shifts
toward the new data distribution and forgets how to handle pre-
viously learned tasks upon encountering new data [6, 39, 44, 46].
This motivated a series of continual learning research to tackle this
problem [8, 38, 41].

Pioneering efforts focused on adapting incremental learning
approaches for other data modalities to the graph domain [30, 39,
48]. However, they ignore the fact that nodes and edges are not
independent and identically distributed (i.i.d.) in the graph learning
scenario [34, 35]. In the vision and language domain, individual
image or text data points do not affect each other, and future data
blocks do not impact the data distribution of the existing data
blocks. In contrast, new graph data blocks connect to existing data
via edges and could significantly change existing data distribution.
For example, an incoming data block can add edges between two
disconnected components in an existing graph, drastically changing
the graph topology and, subsequently, the learned model behavior.
Such uniqueness makes graph incremental learning an even more
challenging scenario than incremental learning in other domains.

Subsequent efforts tackled the problem in several ways [31,
34, 39]. For instance, PI-GNN [43] rectified the old model on the
graph modified by the new data. TWP [20] identified topology-
aware parameters to stabilize the model under graph structure shift.
DiCGR [18] breaks relation triplets to components to better capture
graph structures. RLC-CN [23] determines the optimal memory size
for effective efficiency/performance trade-off. SSRM [28] minimizes
structural shift loss to mitigate performance degradation on old
nodes.

These methods show improvements in the graph setting com-
pared to the naive adaptation of incremental learning methods from
other domains. However, a commonality of these approaches is that

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://arxiv.org/abs/2508.09974v1

KDD ’25, June 03-05, 2018, Woodstock, NY

they build the new model upon an inseparable old model. Specifi-
cally, Elastic Weight Consolidation (EWC) [17] used the old model
parameters as the single regularization target for all parameters; Ex-
perience Replay (ER) [48] trained the model using all saved subsets
of nodes from old data blocks; Parameter Isolation (PI-GNN) [43]
froze all old model parameters and used an additional network
to modify the model output. Such a pattern causes inflexibility
when dealing with the "stability versus plasticity dilemma" [15]
commonly seen in the continual learning domain, where the model
needs to effectively trade-off between maintaining old knowledge
(stability) and learning new (plasticity).

For example, in Figure 1, blue, red, and green nodes represent
data blocks one, two, and three that arrive in order in all three
cases, and we update the model whenever a data block arrives.
Block one and two are identical in all cases, while block three is
isolated, connected to both blocks two and three, and connected
to block two only in cases A, B, and C, respectively. After learning
blocks one and two, the model needs to learn block three while
maintaining old knowledge. Previous approaches tackle cases A
and B, where the new block relates to old blocks by similar patterns
(no correlation to all blocks in case A, and high correlation in case
B), and they use the same strategy to retain knowledge from both
blocks one and two. However, in case C, where the new block is
partially dependent on the old blocks, they still apply the same
stabilizing strength to knowledge acquired from previous blocks.
While a stronger stabilizing effect is required to maintain knowledge
in block one as it is more divergent from the new block, a smaller
effect is desirable for knowledge in data block two as it is similar
to the new block and weaker stabilizing enables better knowledge
transfer and learning. Conventional approaches lack the flexibility
to handle such diversity among data blocks and hence witness
performance degradations.

To tackle this problem, we propose a Dynamic Mixture-of-Expert
(DyMoE) module to use separate expert networks to model different
data blocks with a gating mechanism to synthesize information
from the most relevant experts. Specifically, the module has the
same number of experts as trained data blocks, and the experts
are dedicated to learning from their corresponding data blocks.
DyMOoE routes the input to experts through a gating mechanism,
and the expert outputs are combined through the gating values by
a weighted sum. This approach explicitly considers the correlation
between different experts and data blocks. For the same example
in Figure 1, we train three separate experts with specialization in
their corresponding data blocks. We then compute the relevance of
the experts to the input. The experts with higher relevance have a
higher impact on the prediction. This approach dynamically adjusts
the combination of knowledge from different data blocks; less im-
pactful experts are disabled during inference to reduce misleading
information. When a new data block arrives, we append a new
expert dedicated to the new data block without interfering with the
knowledge of existing experts during training. To ensure each ex-
pert focuses on the assigned data block, we propose a block-guided
loss as a training objective that enforces a high relevance score of
experts to the input from their corresponding data blocks, greatly
reducing catastrophic forgetting while allowing flexible querying
of old knowledge.

Kong et al.

While DyMoE applies to most neural architectures, it is partic-
ularly useful for graph incremental learning, where nodes’
receptive fields contains neighbor nodes from different data blocks.
We apply DyMoE to graph neural networks such that different
experts can process nodes from different data blocks in the same
ego subgraph, largely preserving the authenticity of the node’s rep-
resentation. Another challenge is that nodes in future data blocks
change the topology and information in the old data blocks, as they
become neighbor nodes to the old data blocks. We extend the gating
mechanism to distinguish future neighbors from the old, we then
filter future nodes for the old experts, largely recovering the old be-
havior and reducing forgetting. To increase efficiency, we propose
a sparse variant, inspired by Shazeer et al. [26], that only considers
the most relevant experts during inference, significantly reducing
the computation complexity while maintaining high accuracy. In
this paper, we

o Identified the issue of existing continual learning methods
that ignore the correlation between different data blocks.

e Designed a DyMoE module with specialized experts for each
data block and proposed data block-guided loss to minimize
the negative interference between experts.

o Interleave the DyMoE module into GNNs and use graph
block-guided loss to address the data shift problem unique
to graph continual learning.

e Developed a sparse version of the DyMoE module so the
model is both efficient and effective.

In our empirical evaluation, DyMoE maintains the same effi-
ciency, while significantly improving over the best baseline in class
incremental learning setting. The model also demonstrates strong
results in instance incremental settings.

2 Preliminaries

Graph Incremental Learning. This paper focuses on incremental
learning for node classification. Specifically, we follow the widely
adopted problem formulation [8, 41], and aim to incrementally learn
from a graph data block sequence D = {G(l), el }, and each
data block is a graph G = (VD E(D) 4Dy where V() s the set
of nodes, and E() is the set of edges, and y(i) is the classification
labels of the nodes. Future graph snapshots expand on existing
graphs, and G(?) is a subgraph of GU/) for i < j. We additionally
use AG) = (v \ y(i-1) g@)\ Ei-1)) o represent the graph
delta between G(?) and GU=1). We use b(v) to indicate the data
block index where the data/node v first appears. In the incremental
learning setting, data arrive in order, and the i-th model is only
trained and evaluated on (G(l), G<i)) without any knowledge
about future graphs. The goal is to maximize the overall accuracy on
each data block while minimizing the performance drop on previous
data blocks. If the classes in y(i) persist throughout all blocks, we
refer to the task as instance-incremental learning [33]. If the classes
in y(are disjoint, we refer to the task as class-incremental. In this
case, new data blocks also bring in new classes [45], and the model
needs to classify a sample without knowing its corresponding block
during inference.

Dynamic Mixture-of-Experts for Incremental Graph Learning

KDD ’25, June 03-05, 2018, Woodstock, NY

(Incremental Graph Different correlation between data blocks and expert importance
16 A \i Case A i Case B i CaseC
_Jfﬁ_i_!__‘
[0} 1]
£l AW | | |
R : :
=| dao= s s
v L_?}_A___!__!j |’ ‘, No Impact D Regular Impact D HighImpact @ Block1 @ Block2 @ Block3)

Figure 1: Left: Data blocks arrive in sequence. Right: Different connection types of three data blocks. Our proposed method

activates dedicated experts when inferring relevant data blocks.

The naive solution is to train a model on the full graph G for
every block. However, this requires retraining on all old data multi-
ple times, incurring huge computational costs. Incremental learning
methods aim to train only on the graph delta while maintaining
good performance on the old data.

To evaluate a model, let a; ; be the accuracy of all evaluation
nodes in G;, evaluated by the model after training G;, which is a
superset of evaluation nodes in G and i < j. We evaluate the
overall model performance by Average Accuracy (AA) and Average
Forgetting (AF),

J

t
1 1 1
AA = 7 ajj, AF= n E ; E ajj — aij (1)

i=1 j=1 i=1

where ¢ is the number of data blocks. AA evaluates the model’s
average accuracy right after the model is trained on a data block,
while AF evaluates the model’s ability to retain knowledge from
previous data blocks. The goal of an incremental learning method
is to maximize AA and minimize AF.

Graph Neural Networks Graph neural networks iteratively
update a node’s embeddings from their neighbor nodes through
message-passing layers [10]. Specifically, for a graph G = (V, E),
the i-th layer of a T-layer GNN is,

h{*Y = coMB(WY, AGGR({hP|u e N(v)}), veV (2

where N (v) are the direct neighbors of v. Different GNN designs
differ mainly by the combine (COMB) and aggregate (AGGR) func-
tions.

3 Dynamic Mixture-of-Experts Graph Neural
Network

This section first introduces the Dynamic Mixture-of-Experts (Dy-
MoE) module that dynamically increases the number of experts
for new data blocks. We then describe the integration of DyMoE
and GNN for effective graph incremental learning. To overcome
the efficiency issue with long data sequences, we propose Sparse
DyMoE to reduce the complexity of our framework. The overall
architecture of the framework is shown in Figure 2.

3.1 Dynamic Mixture-of-Experts Module

Conventional mixture-of-experts (MoE) models create networks of
the same architecture and apply a gating mechanism to combine
the networks’ outputs using a weighted sum [26]. The number of
experts is fixed after initialization. However, to accommodate new
data blocks, MoE models suffer from the same issue as in other
continual learning methods. They still need to adjust the weights
of all previous experts, leading to forgetting. To mitigate this, we
propose the DyMoE module, adding one expert for every new data
block without modifying previously trained experts. Let ¥ be a
class of neural networks with the same architecture, and fy € ¥
be an instance of the network parametrized by 6. Specifically,

h=fy(x) xeR"“ heR™fyeF 3)

where x and h are the input and output to the network, and n
and m are the input and output dimensions. Given an incremental
data sequence D = {(x®, y(l)), (X)) y<t))}, DyMoE handles
the first data block like a conventional network. Specifically, it
minimizes the empirical loss,

(1)| > Ly

i,xex®

arg min ———

) fo, () 4

The loss function £ is task dependent, and we use cross-entropy
loss for classification. For the second data block, we will add one
expert and gating vectors to the overall model. To compute the
output, we have

h = f(g,,0,) (x) = a1fp, (x) + a2 fp, (%),

e exp(s(x, gi)) ie{1,2} ©)

exp(s(x, g1)) + exp(s(x, g2))

where g are gating vectors associated with each expert, s(, -)
is a similarity measure, and we use softmax on the similarities to
compute the importance of each expert for the input. Note that this
formulation is the same as existing MoE approaches, and the key
difference is that the number of experts dynamically increases as
more data arrive. Subsequent data blocks follow the same procedure,
where the output is computed as,

exp(s(x. gi))

—_— (6
S eptog)

t
h=fio,...00 () = D aify,(x), =
i=1

KDD ’25, June 03-05, 2018, Woodstock, NY

DyMoE GNN training at time t=2 L=Lys+yLp, +6Lgp
t

Kong et al.

Block-guided attention reduce impact of future nodes

=

| ey

w
9]
o
i
o
c.
a
@
a

<

@

o

Q

o

=

[}

Z Wadx3g

==

Suneo

]
g
Eﬂ!lmj“

Node representations

[Node from datablock 2]

- Block-guided — Forward Active = = Inactive

A

loss pipeline pipeline expert L — =" expert

Figure 2: Pipeline of DyMoE GNN. Left: Each GNN layer has t experts with individual attention and MLP weights. We compute
gating values from the node representations and the gating vectors. During training, we compute a block-guided loss between
the gating values and the data block index for correct expert selection. Top-Right: the graph block-guided loss assigns additional
weights to neighbor nodes and filters unrecognized nodes for experts. Bottom-Right: When a new data block arrives, we add a
new expert and a gating vector to the DyMoE module. In the sparse case, only the most important experts are used.

When training on a new data block ¢, we only optimize the new
expert and all the gating vectors, specifically,

> Lyi fio,...00 ()

i,xeX

™

argmin Ly, Legs = i
0:.{g1...9¢} X
Intuitively, this training scheme completely preserves the knowl-
edge obtained from previous data blocks. Ideally, when the gating
vectors are perfectly trained to distinguish which data block a par-
ticular data point belongs to, the model can fully recover the
output of that data point, eliminating forgetting.

Block-guided loss. While the experts can preserve learned
knowledge, the new experts are randomly initialized and start with
trivial predictions on all data. The model will rely on the existing
trained experts to make predictions, though they may carry old,
potentially suboptimal, knowledge regarding the new data block.
The gating vectors, including the new one, will tend to select the
old experts during training. The model can hence be trapped at the
local minimum without properly training the new dedicated experts.
Consequently, we need to inject the information about the correct
experts for our dynamically initialized new modules. This is difficult
in conventional MoE because of the lack of supervision for correct
experts. However, in continual learning, data arrive in blocks, and
since experts are designed to handle individual data blocks, we
know exactly which expert a particular training data point should be
assigned to. We propose a block-guided loss to train the gating
vectors for correct expert assignment. Specifically, for an arbitrary
data point x, in addition to its classification loss, we add a cross-
entropy loss between the gating values of all experts and the data
point’s corresponding data block index b(x). The computation is
valid because the number of experts equals the number of witnessed
data blocks. The loss forces an expert’s corresponding data and
gating vector to have large similarities, maximizing the likelihood of

using the correct expert to generate output for the data. Specifically,
Lpr(x) = CE(Softmax(ay...ar), OneHot (b(x),t)),x € X (8)

where CE is cross-entropy loss, « is the gating values, OneHot(j, t)
generates a t-dimensional one-hot vector whose j-th entry is one.
Note that if we naively take X as the new samples in the most recent
data block X () , all of them will have the same data block index (the
last index), causing the model to always use the last expert. Hence,
we store a small sample set from each data block as the memory set,
M@ ¢ XD and |IMD| < XD, and take X = Y2 MDD v x®),
so the model can adjust the gating values accordingly. The size of
memory set [M| = p|X| where p < 1. The memory set construction
details can be found in Appendix B.

Note that we only use such information during training, and the
model does not need the time information, or which block that a
data point belongs to, during inference, making the model perfectly
viable for difficult tasks such as class-incremental learning. The
overall training loss is,

L=Lys+yLpL)]

where f is a hyperparameter controlling the strength of regular-
ization. The combined framework essentially attempts to train a
data-block-dedicated classifier and out-of-distribution detectors for
every data block. The gating mechanism gives high weight to in-
distribution experts while minimizing the impact of out-distribution
experts. While this approach applies to arbitrary data modality, it
is particularly critical in the graph learning setting, where a node’s
neighbor might be from different data blocks and require different
processing. We elaborate more on this in Section 3.2. We theoret-
ically show the advantages of our proposed model over the Pa-
rameter Isolation (PI) [43] approach, a representative architectural
approach for continual learning.

Dynamic Mixture-of-Experts for Incremental Graph Learning

4 Incremental Graph Computation Graph)
t=2 A A @Target Naive
@
O—0O @ /\ Block 1

O Block 2

[Block3 © ©A@QA@
O Expert 1 Interleaving Block-guided
. Expert 2 @

E t3

. xper A A
O High Impact
\" Low Impact OJOPACIRC)

Figure 3: The computation graphs of the same target node at
t = 3 by different approaches.

THEOREM 1. For an arbitrary continual learning problem, suppose
a PI model obtains a cross-entropy classification loss Lpy, there exists
a parametrization of DyMoE that achieves cross-entropy classifica-
tion loss Lpy = Lpy. When the data sequence follows a mixture of
Gaussian distribution, we have Lpy < Lpy.

The proof is in Appendix A. In the proof, we first show that
DyMOoE is at least as powerful as PI. We then show under the
Gaussian Mixture assumption of the input data block sequence;
the DyMoE obtains strictly lower loss, which shows the model’s
superiority.

In practice, the memory set is very small to ensure efficiency,
but we jointly train on it with the full dataset from the new data
block, which can give the model a biased understanding of the
data distribution (i.e. most of the data are from the last data block).
Hence, we propose a data balancing training procedure, where,
after the regular training epochs, we collect the memory set for the
new data block, combine it with all previous training memory sets,
and train a few epochs on them to reflect the actual distribution
of the entire input sequence. We elaborate on the data balancing
training procedure in Appendix B.

3.2 Dynamic Mixture-of-Expert Graph Neural
Network

We then introduce fusing the DyMoE with a graph neural network.
Note that the DyMoE module does not assume any specific network
architectures, and a naive solution can treat a multi-layer GNN
as . However, this ignores the unique property of graph data
in continual learning, where a target node’s neighbors are from
different data blocks. For example, in Figure 3, the target node
is from data block two but is later connected to nodes in block
three. The naive approach will assign expert two to process the
target node and all of its neighbors, but its neighbor nodes are
from blocks one and three, and expert two lacks the knowledge to
properly handle them, leading to compromised performance. Ideally,
a DyMoE model should assign neighbors to their corresponding
experts. Hence, we propose interleaving the DyMoE modules into
each GNN layer to correct this. We modify a transformer Graph
Convolution Layer [27] to the architecture of each expert layer.

KDD ’25, June 03-05, 2018, Woodstock, NY

Specifically,
feti) =hi,, = MLP(RG ™) +Ar (S, (b [u € N(0)})) (10)

where Att is the attention mechanism with target node’s feature as
query and neighbor nodes’ features as key and values, formally

K
Att(h,U) = softmax(L)y
Vd (11)

q= WtQh,K :thKU, V= tha I/VtQ’ thK, th € RIXn

where Ws are the attention weights, and each expert has individual
MLP and attention weights. The interleaving DyMoE design can
be easily extended to other GNN architectures. The key difference
between this and naive approaches is that DyMoE naturally handles
the problem where neighbor nodes of the target node are from
different data blocks. As long as we properly train the gating vectors,
DyMOoE can route each neighbor node to their corresponding expert
instead of the one corresponding to the target node. This approach
generates the most authentic representations.

Another critical trait of incremental graph learning is that new
data can change the existing graph’s overall topology. In the same
example, expert two is trained to handle data block two without
data from block three. However, after data block three arrives,
its data changes the neighborhood of the target node, meaning
that even we correctly assign the experts, we will not recover the
performance and output. Essentially, the modified topology in the
graph causes the old model to shift from its original prediction and
cause a performance decrease.

To overcome this issue, we observe that since the gating mech-
anism introduced in Section 3.1 can be used to distinguish which
data block a node is from, we can extend it to predict whether a
node occurs before an expert is added to the model. Correctly pre-
dicting this target allows us to suppress future nodes’ influence on
old experts and thus maximally preserve the old behavior. Specifi-
cally, we create an additional gating vector p; for each expert and
compute gating values B, ; for node u on expert t as:

Pu = sigmoid(p; - (WFhy)), ueG (12)

where WP is a linear projection shared by all experts in the same
layer and f is independent of other experts, and it indicates whether
the node u is incremented to the graph before expert t is added
to the model. Since § € (0, 1), we can apply it to the attention
computation to reduce the impact of future nodes. Specifically, the
modified attention becomes,

Attn(hU) = softmax(% +1og(Be))V (13)

where B; is the corresponding gating values S, ; of neighbor nodes
u € U. When S, ; approaches 0, the attention to the corresponding
neighbor will become zero, and when f,, ; approaches 1, the neigh-
bor’s attention is computed as normal. Hence, when the gating
values are computed correctly, the attention mechanism can select
the nodes that reproduce the output like the graph is not incre-
mented with new neighbors. To properly train these gating vectors,
we can use a similar supervised signal as in the block-guided loss.
For a node u and its corresponding data block b(u), we create a
multi-hot vector [, whose first b(u) — 1 entries are zeros and last

KDD ’25, June 03-05, 2018, Woodstock, NY

t —b(u) +1 are ones, and compute the binary-cross-entropy loss as:

t
LoprL(u) = % Z BinaryCrossEntropy(Bu,j, li,j) (14)
Jj=1

We term this loss graph block-guided loss(GBL). The loss encour-
ages the gating value to be 1 if the experts are added after the node,
and 0 otherwise. Finally, we need to accommodate the block-guided
regularization loss to a more fine-grained version for the interleav-
ing design. Instead of using the target node’s corresponding data
block as the regularization target, we use each neighbor node’s own
corresponding data block as the target. And the final loss is,

T
L=Lag+) > yLe(0) +5LepL(v) (15)
i=1 veV
where y and § are hyperparameters. This loss ensures that (a) when
the neighbor and the target nodes are from different data blocks,
we still want the most relevant expert to be of higher importance;
(b) when the correct expert is selected, the expert gets the input
that it recognizes from training (low impact from new neighbors,
and high impact from old/familiar neighbors).

3.3 Sparse Dynamic Mixture-of-Experts GNN

While the proposed DyMoE GNN allows effective knowledge preser-
vation and updates specialized for graph data, it incurs additional
computation cost for the dynamically increasing experts. With more
data blocks, we can have too many experts whose computational
burden overwhelms the performance benefits of the module. In-
spired by previous works on Sparse MoE [26], we introduce sparsity
into the system to improve its efficiency. To that end, we modify
Equation 6 so that only the experts with the top-k importance score
are used to generate predictions. Specifically,

(a1...ar) = Softmax(TopK (s(x, go)...s(x, gr)))

b= Zt:hi, B = aify,(x), ifiin T‘opK (16)
prt 0, otherwise

Because we only use the top-k most essential experts, we do not
need to propagate gradients and compute the output of each ex-
pert, which significantly reduces the training and inference cost. A
complexity analysis can be found in Appendix C.

Since the last expert and gating are randomly initialized, the
model may ignore them because they produce meaningless predic-
tions at the beginning. To mitigate this, we follow Sparse MoE [26]
to tweak the gating values during training randomly so all experts
have proper selection chances, and the new experts and gates can
gradually learn to correctly predict the new data block. The details
about the load balancing can be found in Appendix C.

4 Related Work

Incremental Learning is extensively explored in the deep learn-
ing literature, including computer vision [17, 19, 21] and natural
language processing [14, 22, 29]. The approaches can be roughly
divided into three categories: Regularization-based methods con-
strain the deviation of the new model from the trained model to
retain knowledge [1, 17, 42]; Experience-Replay approaches add
a small subset of previous data blocks to the current training set

Kong et al.

as a way to maintain previous knowledge [5, 21, 24]; Architec-
tural approaches maintain learned knowledge via assigning model
parameters to specific data [2, 7, 19]. Our method falls into the
architectural category. Some existing work also considers separate
modules for each data block [2, 25], but they focus on the task-
incremental scenario, while our method handles both that, and
the more challenging class-incremental case. MoE architecture has
been applied to solve continual learning problem [40], but it does
not use data block information to account for structural shift in
graph incremental learning, whereas our approach handles this
well.

Graph Incremental Learning. Different from ii.d. data, graph
data suffer from distribution shifts in the incremental learning set-
ting. To overcome this novel challenge, architectural approaches
including, PI-GNN [43], FGN [34], and HPN [46], use newly ini-
tialized model components to learn new knowledge. Experience
replay approaches like DyGRAIN [16], ER-GNN [48], and Continual
GNN [35] explicitly retrains old nodes selected from graph-related
criterion. Regularization approaches such as TWP [20], Graph-
Sail [39], GPIL [31], and SEM [47] identify and minimize a regu-
larization loss to mediate structural shift and correct predictions.
MSCGL [4] combines architectural search and regularization to
preserve learned knowledge. However, because these models treat
old models as inseparable units, they ignore different interaction
types between data blocks. Meanwhile, our experts are dedicated
to individual data blocks, facilitating conditional adaptation to new
data.

5 Experiments

We aim to answer the following research questions in the exper-
imental evaluation: Q1: Does the proposed DyMoE framework
achieve good empirical performance while maintaining good effi-
ciency? Q2: How does the memory size impact the performance of
the model? Q3: The framework has several components, how does
each component impact its behavior? Q4: Does our training strat-
egy actually encourage dedicated experts? Implementation details
and data descriptions can be found in Appedix D.

5.1 Quantitative Results

To answer Q1, we evaluate the model performance with average
accuracy (AA) and average forget (AF) on class incremental datasets
(CoraFull [37], Reddit [11], Arxiv [12], DBLP-small [32]), and data
incremental datasets (Paper100M[12], Elliptic [37], Arxiv, DBLP-
small). We compared experience-replay baseline (ER-GNN [48]),
architectural baselines (LWF [19], PI-GNN [43]), and compound
baselines (continual-GNN (C-GNN) [35], RCL-CN [23], SSRM [28]).
We also compared with the pretrain baseline, where we only train
the model on the first date block and infer all future data blocks; the
online baseline, where we directly fine-tune the old model with new
data blocks; and the retrain baseline, where we retrain on all data
blocks whenever new data blocks arrive. We provide the results
of DyMoE module with a similar number of active parameters as
baseline methods and a larger version whose individual experts
are of same size as the baselines (DyMoE-L). They both have three
active experts (k=3). DyMoE represents a fair setting, where our
method’s and baselines’ parameter size and computation time are

Dynamic Mixture-of-Experts for Incremental Graph Learning

KDD ’25, June 03-05, 2018, Woodstock, NY

Table 1: AA and AF of class incremental datasets. Bold represents best baseline and underline represents runner-up.

Dataset ‘ Metric ‘ Pretrain Online LWF ER-GNN SSRM RCL-CN PI-GNN C-GNN Retrain ‘ DyMoE DyMoE-L

|Params.| 43M 43M N/A 43M 43M 47M N/A 45M 43M | 46M 87M
CoraFull AA |17.58+159 34.37+069 38.61x128 64.57x060 70.71x059 67.37x062 70.92+060 73.98+061 83.07+0.79 | 76.59+058 78.16x0.61
AF 0.00+0.00 -14.64+0.79 -13.39+0.98 -11.92+057 -7.85+059 -11.78+057 -9.76+056 -9.28+054 -0.35+0.09 | -7.92+054 -7.31+057
Reddit AA |32.19+293 24.99+045 42.58+395 80.10+0.15 86.55+0.14 83.46+0.18 87.32x016 89.15+0.16 98.17+0.10 | 92.84+0.13 94.15+0.17
AF 0.00+0.00 -33.91+0.19 -29.60+1.19 -6.60+0.19 -2.60+020 -6.36+0.19 -4.36+023 -4.07+021 0.14+0.04 | -2.60+0.19 -1.96+0.22
Arxiv AA (2791247 34.79+376 40.21+263 55.39+1.82 62.43+183 58.20+1.81 62.72+1.84 65.18+1.83 72.19x0.20 | 68.33+1.80 70.15+1.84
AF 0.00+0.00 -32.74+237 -28.13+3.08 -21.06+1.75 -9.93+1.73 -20.81+1.73 -15.37+1.72 -14.44+1.75 0.47+0.18 |[-10.06+1.70 -8.82+1.74
DBLP AA |46.03x180 47.52+363 50.48+330 54.81+3.03 56.56+3.06 55.80+3.03 56.35+3.02 57.62+3.04 65.59+127 | 57.75+3.01 58.08+3.05
AF 0.00+0.00 -17.41+2386 -14.28+246 -8.45+086 -5.43+083 -8.27+085 -6.69+083 -6.39+084 0.47+0.04 | -5.45+082 -5.07+0.85

Table 2: AA and AF of instance incremental datasets. Bold represents best baseline and underline represents runner-up.

Dataset | Metric | Pretrain Online LWF ER-GNN SSRM RCL-CN PI-GNN C-GNN Retrain | DyMoE DyMoE-L

|Params.| 4.3M 4.3M N/A 4.3M 4.3M 4.7M N/A 4.5M 43M | 46M 8.7M
Paper100M AA 58.61+1.98 66.10+451 74.86+235 77.25+132 78.92+131 78.09+129 79.13+131 79.94+131 86.15+0.49 | 80.57+1.29 81.24+1.30
P AF 0.00+0.00 -3.97x043 -2.69+192 -4.08+008 -2.03+010 -3.96+009 -3.05x0.07 -2.80+007 -0.35x0.04 |-2.08x0.05 -1.65=0.07
Ellintic AA 89.91+241 94.37+013 94.79x016 94.37+0.05 95.11x002 95.17+005 95.67+0.05 95.64+0.05 98.13+0.03 | 95.42+001 96.12:+0.04
P AF 0.00+0.00 -0.98+088 -1.96x0.14 -1.03x019 0.10+019 -0.78+020 -0.32x0.19 -0.26+0.19 0.14x002 |-0.10+018 0.23x0.21
Arxiv AA 59.81+232 69.05+039 70.06+064 66.39+0.21 67.52+0.19 67.33+023 68.24+020 68.24+0.23 73.01x0.10 | 68.21+0.19 68.56+0.23
AF 0.00+0.00 -2.31x018 -1.70x042 -0.23x037 0.41x036 -0.13x039 0.20+037 -0.01+037 0.34x029 |-0.01x035 0.24+038
DBLP AA 55.73+215 63.42+161 65.15+1.76 64.19+049 66.62+053 65.12+051 66.70+051 67.30+050 68.59+1.27 | 67.97+049 68.94+0.50
AF 0.00+0.00 -3.57x027 -2.78x085 -3.74x074 -2.51x076 -3.73x076 -3.07x074 -2.94x077 0.29x004 |-2.39x073 -2.33=x0.76
very close. We set the same memory node budget for all baselines, —— Retrain Ours —— RCLCN —— SSRM —— PI-GNN
the memory budget for each dataset can be found in Appendix D 09 0.00
We show the experiment results of class incremental setting 0,05
in Table 1, the Params. row shows the active parameters of the 08 o
baselines, LWF and PI-GNN’s parameter sizes can increase indefi- S 07 S _010
nitely with the number of datablocks, hence we leave it as "N/A". ;:d ' i
From the results, we can see our method significantly improves 0.6 —0.15
over most existing baselines for both AA and AF. We reach an
average of 3.18% and 4.92% relative performance improvement in 035 10 ~0-20% 10

AA across datasets for DyMoE and DyMoE-L, respectively. The

o . AA —-AA
relative improvement is computed by %, where AAp;

is the best baseline result. While DyMoE does not reach unanimous
superiority on AF, we observe that SSRM, obtaining better AF, has
a much lower AA. DyMoE on average improves over SSRM on AA
by 6.78%, whereas the decrease in AF is less than 1%. Meanwhile,
DyMoE outperforms other baselines on AF by large margins. This
shows that DyMoE is a more effective trade-off between stability
and plasticity. The solid empirical results showed the superiority
of the DyMoE design and validated our theory. Comparing DyMoE
and DyMoE-L, we see that DyMoE-L achieves better AA and AF,
showing that a larger parameter size is more ideal to learn new
knowledge without interfering with the old. For the results of in-
stance incremental learning in Table 2, DyMokE still achieves better
results on most targets, including AA on paper100M, Elliptic, and
DBLP, while maintaining competitive results on AF. On datasets

5
Datablock Index

5
Datablock Index

Figure 4: Performance progression on CoraFull dataset over
data blocks of our models and baselines.

Table 3: Training and inference time. (Ave. Seconds/Epoch).

CoraFull Arxiv Reddit
Train Inference Train Inference Train Inference
Finetune 2.41 1.49 3.59 8.96 8.79 4.57
SSRM 2.46 1.48 3.94 8.79 9.86 4.65
PIGNN 2.95 2.06 4.59 12.59 10.57 5.91
Retrain 6.47 1.52 17.18 8.94 35.18 4.63
DyMoE 2.47 1.55 4.17 8.86 10.28 4.75
DyMoE-L 2.94 2.14 4.68 13.09 13.91 6.02

where DyMoE did not achieve superior results, like Arxiv, we ob-
serve that even the most naive baseline (Online) achieved higher

KDD ’25, June 03-05, 2018, Woodstock, NY

Table 4: Ablation study of class incremental and instance
incremental datasets.

Reddit Cora-Full Paper100M
AA AF AA AF AA AF
DyMoE 92.84+0.13 -2.60+0.19 76.59+058 -7.92x054¢ 80.57+1.29 -2.08x005
DyMoE-y =0 91.38+058 -3.28+036 74.39x058 -7.91+112 78.21x153 -3.31x158
DyMOoE-6 =0 89.94x128 -4.13x042 72.56+065 -8.47x058 78.49+147 -3.49x1.79

DyMoE-y = 0,5 =0 90.18x058 -5.19+138 72.17+114 -10.62+120 76.12+039 -4.34+176

performance than other advanced continual learning methods. We
suspect that forgetting was not a severe issue in these datasets, and
most continual learning methods enforce a mechanism to maintain
the old knowledge, which "over-regularizes" the learning process,
causing underfitting and degraded performance.

In Table 3, we show the training and inference time of the base-
lines and our model. Compared to the retrain baseline (performance
upper-bound), both DyMoE and DyMoE-L cost significantly less
training time, as the method requires significantly less memory
data compared to the retrain method to maintain a competitive
performance. DyMoE has very close training and inference time
comparing to most effective baselines (SSRM, PIGNN), while achiev-
ing better results on most targets. Note that C-GNN is not compared
here because it theoretically has the same complexity as Finetune.
DyMoE-L, due to a higher parameter size, requires more computa-
tion costs during inference, however, DyMoE-L’s cost is comparable
to that of the architectural approach PIGNN, while maintaining
higher performance. Furthermore, we plot the AA and AF with
respect to the data block sequences in Figure 4. We observe that
DyMoE can align with the upper-bound retrain method in the first
few data blocks in AA, while demonstrating a large margin over
other baselines. SSRM achieves better AF, but we can see that in
the last few datablocks, DyMoE’s forgetting is better, meaning that
DyMOoE can be more advantageous in maintaining knowledge in a
longer data block sequence.

5.2 Investigation of DyMoE

To answer Q2, we compare our method with three other baselines,
SSRM, PI-GNN, and C-GNN, that use memory nodes to help retain
old knowledge. An ideal incremental learning method should only
use a small memory size to obtain desirable performance. We plot
the results with different memory portion in Figure 6. From the
results, we can see that our approach achieves better performance
with the same size of memory, especially when we only have 0.01
memory portion of the training data block on the Reddit dataset.
Note that when the memory size approaches infinity, all methods
become retrained, and hence we are seeing a converging pattern
for the baselines. To answer Q3, we first investigate the effect of the
gating mechanism in DyMoE. To ensure that the nodes are routed
to the correct experts and experts only receive nodes that they are
familiar with during message-passing, we enforce block-guided loss
and graph block-guided loss to provide supervision for the gating
mechanism. We study the model performance when these losses
are absent from the training process. The results are in Table 4. We
observe that removing either y or § leads to performance degrada-
tion. When both losses are absent, we usually observe the lowest

Kong et al.
—— CorakFull Reddit —— ArxivCIL
—_——
0.90 ~0.02
>‘0.85
@ 0.80 —0.04
o

"
(9]
5 /A 2
So7s S -0.06
<0.70 o /¥
-0.08
0.65

0.60 —0.10
7 1

7

3 5 3 5
k, Active Experts k, Active Experts

Figure 5: Performance change w.r.t. # of active experts.

—— Ours SSRM —— PI-GNN —— C-GNN
CoraFull Reddit
95
775
L3‘75.0 90
c
2725
£ 85
70.0
67.5 80
0.05 0.10 0.15 0.025 0.050 0.075 0.100

Memory Portion Memory Portion

Figure 6: Model accuracy versus memory size for memory-
based models.

—— Expert-0 —— Expert-4 —— Expert-8 Expert-12
Expert-2 —— Expert-6 —— Expert-10
1.0 y=5,6=5 1.0 y=0,6=0
0.8 0.8
0
@ 0.6 0.6
=}
J0.4 0.4
<<
0.2 0.2
SAVZ-4N

%0 25 50 75 100 125°%0 25 50 75 100 135
Datablock Index Datablock Index

Figure 7: Experts individual performance on data blocks.
Each line plot represents an expert.

performance. This shows the necessity of directly using block in-
formation as supervision, which is largely ignored in most existing
approaches. We also observe that § has a stronger impact on the
model behavior, as without it the model experiences performance
drop, showing the necessity of dedicated experts.

We then investigate how the model reacts to the number of active
experts, and show the performance evolution as we increase the
number of experts in Table 5. We can see that the AA increases
from k = 1 to k = 5, while AF begins to decrease from k = 3.
The divergence between AA and AF after k = 3 shows that more
experts make learning easier, potentially because new experts can
borrow more knowledge from the old experts. Meanwhile, it is
more difficult to maintain old knowledge. We suspect that this is
because extra experts inevitably introduce noises and irrelevant
knowledge to old representations, causing forgetting.

Q4 validates whether our model and training procedure results
in specialized experts as designed. We evaluate the performance

Dynamic Mixture-of-Experts for Incremental Graph Learning

of each expert on individual data blocks. In Figure 7, we can easily
observe that when trained with block-guided loss, the experts are
specialized, and they achieve high prediction accuracy for their
corresponding data blocks. When the block-guided loss is absent,
the experts fail to specialize, further demonstrating the necessity
of using block-information to guide training the MoE for continual
learning.

6 Conclusion, Limitations, and Future Work

In this paper, we identified the drawbacks of existing graph incre-
mental learning models and proposed the DyMoE module with a
sparse version to model different interaction types between data
blocks effectively and efficiently. However, we also acknowledge
that our model may have trouble locating the correct experts when
there are too many data blocks, resulting in compromised perfor-
mance. While this can be solved by periodic retraining, we plan
to extend our work to handle extremely long data sequences (over
1000 data blocks) in future work.

References

[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and
Tinne Tuytelaars. 2018. Memory aware synapses: Learning what (not) to forget.
In Proceedings of the European conference on computer vision (ECCV). 139-154.
Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. 2017. Expert gate:
Lifelong learning with a network of experts. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 3366—3375.

Aleksandar Bojchevski and Stephan Giinnemann. 2018. Deep Gaussian Embed-

ding of Graphs: Unsupervised Inductive Learning via Ranking. In International

Conference on Learning Representations.

[4] Jie Cai, Xin Wang, Chaoyu Guan, Yateng Tang, Jin Xu, Bin Zhong, and Wenwu

Zhu. 2022. Multimodal Continual Graph Learning with Neural Architecture

Search. In Proceedings of the ACM Web Conference 2022 (Virtual Event, Lyon,

France) (WWW °22). Association for Computing Machinery, New York, NY, USA,

1292-1300. doi:10.1145/3485447.3512176

Arslan Chaudhry, Albert Gordo, Puneet Dokania, Philip Torr, and David Lopez-

Paz. 2021. Using hindsight to anchor past knowledge in continual learning. In

Proceedings of the AAAI conference on artificial intelligence, Vol. 35. 6993-7001.

Yuanning Cui, Yuxin Wang, Zequn Sun, Wenqiang Liu, Yigiao Jiang, Kexin Han,

and Wei Hu. 2023. Lifelong embedding learning and transfer for growing knowl-

edge graphs. In Proceedings of the AAAI Conference on Artificial Intelligence,

Vol. 37. 4217-4224.

Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and Marcus

Rohrbach. 2020. Adversarial continual learning. In Computer Vision—ECCV 2020:

16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XI

16. Springer, 386-402.

[8] Falih Gozi Febrinanto, Feng Xia, Kristen Moore, Chandra Thapa, and Charu Ag-
garwal. 2023. Graph lifelong learning: A survey. IEEE Computational Intelligence
Magazine 18, 1 (2023), 32-51.

[9] Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep,
Gertrude Liu, Jeremy B R Hayter, Richard Vickers, Charles Roberts, Jian
Tang, David Roblin, Tom L Blundell, Michael M Bronstein, and Jake P
Taylor-King. 2021. Utilizing graph machine learning within drug dis-
covery and development. Briefings in Bioinformatics 22, 6 (05 2021),
bbab159. doi:10.1093/bib/bbab159 arXiv:https://academic.oup.com/bib/article-
pdf/22/6/bbab159/41087478/bbab159.pdf

[10] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, 1263-1272.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[12] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2021. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. arXiv:2005.00687 [cs.LG] https://arxiv.org/
abs/2005.00687

[13] Weiwei Jiang and Jiayun Luo. 2022. Graph neural network for traffic forecasting:

A survey. Expert Systems with Applications 207 (2022), 117921. doi:10.1016/j.eswa.

2022.117921

Zixuan Ke and Bing Liu. 2022. Continual learning of natural language processing

tasks: A survey. arXiv preprint arXiv:2211.12701 (2022).

[2

3

=

&

G

=

[7

[

[14

[15

[16

(17

oy
&

[19

[20

[21

~
£,

[23

[24

[25

[27

[28

[29

&
=

[31

[32

(33]

(34]

(35]

[36

KDD ’25, June 03-05, 2018, Woodstock, NY

Dongwan Kim and Bohyung Han. 2023. On the stability-plasticity dilemma of
class-incremental learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 20196-20204.

Seoyoon Kim, Seongjun Yun, and Jaewoo Kang. 2022. DyGRAIN: An Incremental
Learning Framework for Dynamic Graphs.. In IJCAL 3157-3163.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and
Raia Hadsell. 2017. Overcoming catastrophic forgetting in neural networks. Pro-
ceedings of the National Academy of Sciences 114, 13 (2017), 3521-3526. doi:10.1073/
pnas.1611835114 arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.1611835114
Xiaoyu Kou, Yankai Lin, Shaobo Liu, Peng Li, Jie Zhou, and Yan Zhang. 2020.
Disentangle-based Continual Graph Representation Learning. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
2961-2972.

Zhizhong Li and Derek Hoiem. 2018. Learning without Forgetting. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 40, 12 (2018), 2935-2947.
doi:10.1109/TPAMI.2017.2773081

Huihui Liu, Yiding Yang, and Xinchao Wang. 2021. Overcoming catastrophic
forgetting in graph neural networks. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 35. 8653-8661.

David Lopez-Paz and Marc' Aurelio Ranzato. 2017. Gradient Episodic Memory
for Continual Learning. In Advances in Neural Information Processing Systems,
L. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (Eds.), Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/
paper_files/paper/2017/file/f87522788a2be2d171666752f97ddebb-Paper.pdf

Fei Mi, Liangwei Chen, Mengjie Zhao, Minlie Huang, and Boi Faltings. 2020. Con-
tinual learning for natural language generation in task-oriented dialog systems.
arXiv preprint arXiv:2010.00910 (2020).

Appan Rakaraddi, Lam Siew Kei, Mahardhika Pratama, and Marcus De Carvalho.
2022. Reinforced continual learning for graphs. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management. 1666-1674.
David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gre-
gory Wayne. 2019. Experience Replay for Continual Learning. In Ad-
vances in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2019/file/
fa7cdfadla5aaf8370ebeda47a1ff1c3-Paper.pdf

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. 2016. Pro-
gressive neural networks. arXiv preprint arXiv:1606.04671 (2016).

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geoffrey Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 (2017).
Yunsheng Shi, Zhengjie Huang, Wenjin Wang, Hui Zhong, Shikun Feng, and
Yu Sun. 2020. Masked Label Prediction: Unified Massage Passing Model for
Semi-Supervised Classification. CoRR abs/2009.03509 (2020). arXiv:2009.03509
https://arxiv.org/abs/2009.03509

Junwei Su, Difan Zou, Zijun Zhang, and Chuan Wu. 2023. Towards robust graph
incremental learning on evolving graphs. In International Conference on Machine
Learning. PMLR, 32728-32748.

Jingyuan Sun, Shaonan Wang, Jiajun Zhang, and Chengqing Zong. 2020. Distill
and replay for continual language learning. In Proceedings of the 28th international
conference on computational linguistics. 3569-3579.

Li Sun, Junda Ye, Hao Peng, Feiyang Wang, and S Yu Philip. 2023. Self-supervised
continual graph learning in adaptive riemannian spaces. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 37. 4633-4642.

Zhen Tan, Kaize Ding, Ruocheng Guo, and Huan Liu. 2022. Graph few-shot class-
incremental learning. In Proceedings of the fifteenth ACM international conference
on web search and data mining. 987-996.

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Ar-
netMiner: extraction and mining of academic social networks. In Proceedings
of the 14th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (Las Vegas, Nevada, USA) (KDD °08). Association for Computing
Machinery, New York, NY, USA, 990-998. doi:10.1145/1401890.1402008

Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. 2022. Three types
of incremental learning. Nature Machine Intelligence 4, 12 (2022), 1185-1197.
Chen Wang, Yuheng Qiu, Dasong Gao, and Sebastian Scherer. 2022. Lifelong
graph learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 13719-13728.

Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. 2020. Streaming graph neu-
ral networks via continual learning. In Proceedings of the 29th ACM international
conference on information & knowledge management. 1515-1524.

Shoujin Wang, Liang Hu, Yan Wang, Xiangnan He, Quan Z. Sheng, Mehmet A.
Orgun, Longbing Cao, Francesco Ricci, and Philip S. Yu. 2021. Graph Learning
based Recommender Systems: A Review. arXiv:2105.06339 [cs.IR] https://arxiv.
org/abs/2105.06339

https://doi.org/10.1145/3485447.3512176
https://doi.org/10.1093/bib/bbab159
https://arxiv.org/abs/https://academic.oup.com/bib/article-pdf/22/6/bbab159/41087478/bbab159.pdf
https://arxiv.org/abs/https://academic.oup.com/bib/article-pdf/22/6/bbab159/41087478/bbab159.pdf
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2005.00687
https://doi.org/10.1016/j.eswa.2022.117921
https://doi.org/10.1016/j.eswa.2022.117921
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.1611835114
https://doi.org/10.1109/TPAMI.2017.2773081
https://proceedings.neurips.cc/paper_files/paper/2017/file/f87522788a2be2d171666752f97ddebb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f87522788a2be2d171666752f97ddebb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://arxiv.org/abs/2009.03509
https://arxiv.org/abs/2009.03509
https://doi.org/10.1145/1401890.1402008
https://arxiv.org/abs/2105.06339
https://arxiv.org/abs/2105.06339
https://arxiv.org/abs/2105.06339

KDD ’25, June 03-05, 2018, Woodstock, NY

[37] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio
Bellei, Tom Robinson, and Charles E Leiserson. 2019. Anti-money laundering in
bitcoin: Experimenting with graph convolutional networks for financial forensics.
arXiv preprint arXiv:1908.02591 (2019).

[38] Man Wu, Xin Zheng, Qin Zhang, Xiao Shen, Xiong Luo, Xingquan Zhu, and
Shirui Pan. 2024. Graph Learning under Distribution Shifts: A Comprehensive
Survey on Domain Adaptation, Out-of-distribution, and Continual Learning.
arXiv preprint arXiv:2402.16374 (2024).

[39] Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, and Mark
Coates. 2020. GraphSAIL: Graph Structure Aware Incremental Learning for
Recommender Systems. In Proceedings of the 29th ACM International Conference
on Information & Knowledge Management (Virtual Event, Ireland) (CIKM °20).
Association for Computing Machinery, New York, NY, USA, 2861-2868. doi:10.
1145/3340531.3412754

[40] Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You
He. 2024. Boosting continual learning of vision-language models via mixture-of-
experts adapters. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 23219-23230.

[41] Qiao Yuan, Sheng-Uei Guan, Pin Ni, Tianlun Luo, Ka Lok Man, Prudence Wong,
and Victor Chang. 2023. Continual graph learning: A survey. arXiv preprint
arXiv:2301.12230 (2023).

[42] Friedemann Zenke, Ben Poole, and Surya Ganguli. 2017. Continual learning
through synaptic intelligence. In International conference on machine learning.
PMLR, 3987-3995.

[43] Peiyan Zhang, Yuchen Yan, Chaozhuo Li, Senzhang Wang, Xing Xie, Guojie Song,

and Sunghun Kim. 2023. Continual learning on dynamic graphs via parame-

ter isolation. In Proceedings of the 46th International ACM SIGIR Conference on

Research and Development in Information Retrieval. 601-611.

Xikun Zhang, Dongjin Song, Yixin Chen, and Dacheng Tao. 2024. Topology-

aware Embedding Memory for Continual Learning on Expanding Networks. In

Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and

Data Mining. 4326-4337.

Xikun Zhang, Dongjin Song, and Dacheng Tao. 2022. Cglb: Benchmark tasks for

continual graph learning. Advances in Neural Information Processing Systems 35

(2022), 13006-13021.

[46] Xikun Zhang, Dongjin Song, and Dacheng Tao. 2023. Hierarchical Prototype
Networks for Continual Graph Representation Learning. IEEE Transactions on
Pattern Analysis and Machine Intelligence 45, 4 (2023), 4622-4636. doi:10.1109/
TPAMI.2022.3186909

[47] Xikun Zhang, Dongjin Song, and Dacheng Tao. 2023. Ricci curvature-based graph
sparsification for continual graph representation learning. IEEE Transactions on
Neural Networks and Learning Systems (2023).

[48] Fan Zhou and Chengtai Cao. 2021. Overcoming catastrophic forgetting in graph
neural networks with experience replay. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 35. 4714-4722.

[44

[45

Kong et al.

A Proof of Theorem 1

We restate Theorem 1 for completeness,

THEOREM 1. For an arbitrary continual learning problem, suppose
a PI model obtains a cross-entropy classification loss Lpy, there exists
a parametrization of DyMoE that achieves cross-entropy classifica-
tion loss Lpy = Lpy. When the data sequence follows a mixture of
Gaussian distribution, we have Lpy < Lpy.

It is easy to see that DyMoE is at least as powerful as PI since
we can parameterize all gating vectors with the same value; hence,
the weights of all experts are the same, which makes the final
output essentially a summation of each expert’s output. In this case,
DyMoE degenerates to PI. We then prove that under the Gaussian
Mixture assumption of the data blocks, DyMoE achieves lower loss
and, hence, is strictly more powerful than PL

Proor. Consider the case with two data blocks generated from
Gaussian Distributions, X; = N (p1,0%I), and Xo = N (p2, o°I).
For simplicity, we assume the same variance across coordinates
and the probability of data from each distribution is the same. Let
the distance between two distributions be B. The labels of data
are generated depending on their distance from the mean of their
coorresponding distribution, specifically, if x ~ X,

0, ifllx—pull <d
y= . (17)
1, otherwise
and if x ~ X1,
2, ifflx-pll<d
y= X (18)
3, otherwise
where 2d < B is a threshold distance to determine the data la-

bels. This is a practical assumption for a mixture of two Gaussian
distributions.

We then consider the procedure of Parameter Isolation (PI) and
our proposed method. PI first trains a model fi (x) on Xj and then
trains a model f;(x) on X, both f; and f; are in R* for the four
target classes. Hence, when making predictions, we have the logits
to be:

y = softmax(fi (x) + f2(x)) (19)
Since our approach can initialize a network with the same architec-

ture, we can have the same network and parameters as the ones in
P, and the predictions from our model are:

y = softmax(a1 fi(x) + azfa(x)),
[[x-gi

v o exp(— 252”) (20)
! exp(\x 91”)+€Xp(|x 92”)

Here, we use the negative of the distance normalized by the variance
as the similarity measure between the input and the gating vectors.
This is a valid and tractable choice as variance can be estimated by
batch normalization. Note that in the first data block, we directly set
the gating vector to the empirical mean of the input, g1 = %1 = 3.
In the second data block, the block-guided loss solves the problem

N

1
min > s(xi g2) (21)

i=1

https://doi.org/10.1145/3340531.3412754
https://doi.org/10.1145/3340531.3412754
https://doi.org/10.1109/TPAMI.2022.3186909
https://doi.org/10.1109/TPAMI.2022.3186909

Dynamic Mixture-of-Experts for Incremental Graph Learning

which is minimized by g, = p2. We can then rewrite the prediction
of the model:

y = softmax (a1 fi(x) + a2 fo(x)),

exp(— szfz’”) (22)

exp(||x I11||)+exp(||x IJZH)

To show that our model achleves lower loss on thIS task, we only
need to consider the expected loss on the D; as the two distributions
are symmetric. We divide the problem into two cases ||x — u1|| < d,
when the input is close to the distribution mean, and ||x — p1|| > d
when the input is farther away.

For ||x — p1|| < d, the correct label is 0. We consider the cross-
entropy loss of PI,

adj =

Lpr = —log(fitxo)
Ji(x)o + fi(x)1 + fa(x)2 + fa(x)3 23)
~log(2)
ai1fi(x)o + a1 fi(x)1 + a1 fa(x)2 + a1 fo(x)3
and the cross-entropy loss of our method
Ly = ~log(211 o) (2

aifi(x)o + a1 fi(x)1 + azfo(x)2 + a2 fo(x)3

since ||x — p1|| £ d £ B—d < ||x — p2l||, meaning that 7 > ay,
and we have Lp, < Lpy. Since cross-entropy is monotonic, we
can obtain the minimum of Lp; — Lpy at [|x — p1|| = d and
[|lx — g2|| = B — d. Let the minimum be AL jys.. Note AL jpse
increases as d increases and o decreases.

For ||x — p1|| > d, the correct label is 1. Let M be the maximum
absolute value that the neural network f; output for a logit, that is
[f2(x)y| < M. Then, the maximum possible loss is —f(x)1 +log(C-
exp(M)) = log(C) + 2M, where C = 4, the number of classes. Since
logits of PI and our method is bounded by the same M, we have the
maximum possible loss difference to be

[ALgqr| = 4M + 2logC (25)

We now developed a lower bound for the loss difference when x
is close to p1 and an upper bound for the loss difference when x
is far from py, we then compute the probability of each case using

Gaussian tail bound.

d? d?
Plx—p1 > d] < exp(-—),P[x—p1 < d] = 1-exp(-—) (26)
202 202

Then the upper bound of the difference in expected loss when x is
far is:

4
|AEfq,| < (4M + 2l0gC) - exp(———) (27)
20
The lower bound of the expected loss when x is close is:
AEcjose 2 ALcose - (1 - exP(—)) (28)
Taking the ratio:
(4M + 2logC) - exp(—)
ALciose - (1 exP(—))

|AEfar|
AEclose

(29)

As 4 increases, the ratio approaches zero, hence we have the overall
expected loss difference,

AE = AE;jpse + |AEfar| 2 AEcjose = |AEfar| 20 (30)

KDD ’25, June 03-05, 2018, Woodstock, NY

making the overall loss difference positive, and our approach leads
to lower loss in this case. O

B Memory Set Construction

DyMOoE utilizes memory sets to train gating vectors for correct data
routing. To construct the memory, we first set a memory budget
0 < p < 1, representing the portion of the full data block X that
will be kept as memory set M, that is

M| = plX] (31)

Usually, p is a small value (p < 0.05) to ensure the efficiency. In-
spired by ER-GNN [48], we use a sample’s representativeness to
select memory nodes. Let X, be all samples in X that has class ¢, we
collect their learned representation before the final logit prediction
layer, F; = f(x)|x € X.. We then compute the representative vector

Xc as
X E 32
c |F| (32)

Then representativeness of sample x is determined by the norm
distance between the sample representation and the representative
vector, s = —||f(x) — x¢||. We sort this value in X, and pick the
largest k. samples to add to the memory set. k. is determined by
the class distribution.

|Xel
1X]

A benefit of this construction strategy is that the resulting memory
set U; M (1) reflects the actual class distribution but with much less
data. Hence, we can use it to balance the data during training. The
training is divided into two stages, in the first stage, the model is
trained with Uf:_ll M@ y x(), so that the last expert can learn
fine-grained information from the full new data block. Then, we
collect memory for X (*) as described above and train the model
with Ule MW this teaches the gating mechanism the correct class
distribution of the current graph.

ke = (33)

C Details about Sparse DyMoE

Since DyMoE in each individual timestamp can be interpreted as
a conventional static sparse MoE model, we can apply the same
strategy [26] to ensure experts get a good chance of being selected,
including the randomly and newly initialized ones. Specifically,

(a1, ... ar) = Softmax(KeepTopK(H(x, g1,q1), - H(x, g1, q1))
H(x,9gi,qi) = s(x, gi) + StandardNormal() - Softplus(s(x, q;))
vi, if i in TopK
—inf, otherwise
(34)

KeepTopK (vy, ...,0) = {

We add a noise term whose magnitude is determined by another
learnable noise vector.

Modern MoE designs also employ load balancing design to en-
sure each experts get similar number of samples. However, we
observe that such a strategy is not bringing performance boost to
our methods, potentially because the supervised data-block signal
already handles the load balancing issue.

KDD ’25, June 03-05, 2018, Woodstock, NY

D Experiment Details
D.1 Implementation Details

The repository for implementation can be found at the follow-
ing https://github.com/amazon-science/dymoe-graph-incremental-
learning. The model is implemented in PyTorch and DGL, and all
experiments are conducted on 1 Nvidia A100 80GB GPU. We repeat
the experiment 5 times using different random seeds and report
the mean and standard deviation. We uniformly use a fan-out of 10
to extract subgraphs from each target node. The hyperparameters
used during training are shown in Table 5 and Table 6, where the
curly bracket represents the hyperparameters for searching, and
the hyperparameters selected are marked in bold. Memory size is
the per data block memory size, and it is a special hyperparameter
in the continual learning setting because as it increases, all methods
converge to the retrain method, which is usually the upper bound
of all continual learning methods. We set a uniform ratio p of the
training dataset for all methods use memory set.

D.2 Dataset Details

The dataset statistics are shown in Table 7. We collect data from aca-
demic graphs (Arxiv, DBLP, Paper100M, CoraFull), social networks
(Reddit), and BlockChain networks (Elliptic) to show that our model
handles a wide range of datasets. We describe the construction of
each dataset as follows and includes the number of new nodes and
edges in Figure 8 and 9. We use the provided train/valid/test split
from the dataset source. If the source does not have established
split, we use 60/20/20 train valid test split.

ArXiv: Arxiv academic citation network from Open Graph
Benchmark (OGB) [12] contains arxiv articles and the citation infor-
mation between articles. For instance incremental learning setting,
we use the first 25 timestamps in the original arxiv dataset as the
first data block, as they contain significantly less data. We then split
the rest of the data by year, and data in each forms a data block. For
class incremental learning setting, we split the data into 8 blocks
each contains 5 classes.

DBLP: DBLP is an academic network from the DBLP website
containing computer science academic paper, with citation infor-
mation [32]. We follow Zhang et al. [43] to sample 20000 nodes
with 9 classes and 75706 edges from DBLP full data, we split it into
data blocks according to the timestamps. For the class incremental
setting, we split the 9 classes into 5 data block each containing 2
classes, except for the last one with only 1 class.

Paper100M: Paper100M is a citation network extracted from
Microsoft Academic Graph by OGB [12]. We follow Zhang et al.
[43] to sample 12 classes from the year 2009 to the year 2019 from
Paper100M full data and we split it into tasks according to the
timestamps.

CoraFull: CoraFull is a co-citation academic network, where
nodes are papers, and the two nodes are connected if they are co-
cited by other papers [3]. We use the provided CoraFull data from
DGL, and split its 70 classes into 14 5-classes data blocks for class
incremental learning.

Reddit: The Reddit dataset contains Reddit posts as nodes, and
two nodes are connected by edges if they are posted by the same
user [11]. We use the provided Reddit data from DGL, and split its
40 classes into 8 5-classes data blocks for class incremental learning.

Kong et al.

Elliptic: The Elliptic dataset is a bitcoin transaction network,
where each node represents a transaction, and each edge denotes
money flow [37]. Its nodes have timestamps evenly spaced with an
interval about two weeks. We use the original timestamp from the
dataset for instance-incremental learning.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://github.com/amazon-science/dymoe-graph-incremental-learning
https://github.com/amazon-science/dymoe-graph-incremental-learning

Dynamic Mixture-of-Experts for Incremental Graph Learning KDD ’25, June 03-05, 2018, Woodstock, NY

Table 5: Hyperparameters for class incremental learning.

Arxiv-CIL DBLP-CIL CoraFull Reddit
Learning Rate 0.0001
Weight Decay {0.01, 0.001, 0.0001}
Embedding Dimension 128
Epochs 40
Balancing Epochs 10
Y {0.01,0.1, 1,5 {0.01,0.1,1,5} {0.01,0.1,1,5} {0.01,0.1, 1,5}
6 5
p 0.01 0.01 0.05 0.01
batch size 128

Table 6: Hyperparameters for instance incremental learning.

Arxiv-IIL DBLP-IIL Paper100M Elliptic
Learning Rate 0.0001
Weight Decay 0.001
Embedding Dimension 128
Epochs 40
Balancing Epochs 5
Y {0.01,0.1,1,5} {0.01,0.1,1,5} {0.01,0.1,1,5} {0.01,0.1, 1, 5}
6 5
p 0.01
batch size 128

Table 7: Dataset statistics.

#.Nodes # Edges #. Classes #. Datablocks #. Classes per block

CoraFull 19793 126842 70 14 5
Arxiv-CIL 169343 2332486 40 8 5
Reddit 232965 114615892 41 9 5
DBLP-small-CIL 20000 302862 9 5 2
Paper100M-small 49459 217420 12 11 NA
Arxiv-IIL 169343 2332486 40 11 NA
DBLP-small-IIL 20000 302826 9 24 NA

Elliptic 203769 468710 2 49 NA

KDD ’25, June 03-05, 2018, Woodstock, NY

New Nodes

=

30000

25000

20000

15000

10000

New Nodes

o

arxiv_cil

0 2 4 6
Datablock Index
dblp

10 20
Datablock Index

Figure 8: Number of new nodes per data block.

cora_full reddit
2000 50000
3 $ 40000
T 1500 g
= Z 30000
3 3
= 1000 Z 20000
500 10000
0 5 10 0.0 2.5 5.0 7.5
Datablock Index Datablock Index
arxiv paperl00M
40000 12500
« 30000 ,, 10000
3 5
<} S 7500
Z 20000 Z
5 5 5000
= =z
10000 2500
0
0 5 10 0 5 10
Datablock Index Datablock Index
cora_full 1e7 reddit
2.5
15000
2.0
wn (%]
& &
1.
£ 10000 g
2 3
2 L£1.0
5000 0.5
0 5 10 0 5
Datablock Index Datablock Index
arxiv paperl00M
800000 80000
%] %]
gGOOOOO 2 60000
e e
w w
= 400000 = 40000
[} [}
P4 P4
200000 20000
0 0

0 5 10

Datablock Index

5
Datablock Index

0 10

arxiv_cil
600000
(%]
(0]
2400000
w
2
()]
2
200000
0 5
Datablock Index
dblp
30000
$ 20000
[*2]
kel
w
2
210000
0

10 20
Datablock Index

0

Figure 9: Number of new edges per data block.

New Nodes

Kong et al.

dblp_cil
12500
10000
7500
5000
2500
0 2 4
Datablock Index
elliptic
8000
» 6000
[}
kel
o
=4
2 4000
[}
=
2000
0 20 40
Datablock Index
140000 dblp_cil
120000
@ 100000
()]
v
= 80000
[}
Z 60000
40000
0 2 4
Datablock Index
elliptic

15000

New Edges

=

5000

10000

20 40
Datablock Index

0

	Abstract
	1 Introduction
	2 Preliminaries
	3 Dynamic Mixture-of-Experts Graph Neural Network
	3.1 Dynamic Mixture-of-Experts Module
	3.2 Dynamic Mixture-of-Expert Graph Neural Network
	3.3 Sparse Dynamic Mixture-of-Experts GNN

	4 Related Work
	5 Experiments
	5.1 Quantitative Results
	5.2 Investigation of DyMoE

	6 Conclusion, Limitations, and Future Work
	References
	A Proof of Theorem 1
	B Memory Set Construction
	C Details about Sparse DyMoE
	D Experiment Details
	D.1 Implementation Details
	D.2 Dataset Details

