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Abstract

In this paper, we reveal that most current efficient multimodal fine-tuning methods
are hindered by a key limitation: they are directly borrowed from LLMs, often
neglecting the intrinsic differences of multimodal scenarios and even affecting the
full utilization of all modalities. Inspired by our empirical observation, we argue
that unimodal adaptation and cross-modal adaptation are two essential parts for the
effective fine-tuning of MLLMs. From this perspective, we propose Multimodal
low-rank Adaptation (MokA), a multimodal-aware efficient fine-tuning strategy
that takes multimodal characteristics into consideration. It compresses unimodal
information by modality-specific parameters while explicitly enhancing cross-
modal interaction, ensuring both unimodal and cross-modal adaptation. Extensive
experiments cover three representative multimodal scenarios (audio-visual-text,
visual-text, and speech-text), and multiple LLM backbones (LLaMA2/3, Qwen2,
Qwen2.5-VL, etc). Consistent improvements indicate the efficacy and versatility of
the proposed method. Ablation studies and efficiency evaluation are also conducted
to fully asses our method. Overall, we think MokA provides a more targeted
solution for efficient adaptation of MLLMs, paving the way for further exploration.
The project page is at https://gewu-lab.github.io/MokA.

1 Introduction

Large language models (LLMs) have gained remarkable popularity due to their impressive ability to
understand and generate content. To extend their capabilities to more general multimodal scenarios,
recent advancements of Multimodal Large Language Models (MLLMs) [38, 40, 20] have focused
on aligning other modalities, such as images, with text tokens, thereby equipping LLMs with the
ability to interpret and process content of other modalities. However, due to the massive parameter
scale of LLMs, fully fine-tuning such models on downstream tasks is computationally prohibitive
and inefficient in most cases.

A promising direction has emerged in the field of LLM fine-tuning before, which involves selectively
updating a subset of parameters rather than the full model. These Parameter-Efficient Fine-Tuning
(PEFT) strategies have seen widespread adoption and have been successfully extended to the fine-
tuning of MLLMs. In particular, LoRA [12] and its variants, which assume that over-parameterized
models in fact reside on a low intrinsic dimension, have been broadly applied [6, 7, 39], demonstrating
strong adaptability and efficiency. However, the development of efficient multimodal LLM fine-
tuning is at present obscured by a “dark cloud”: most current methods are directly borrowed from
LLMs, often overlooking the fundamental differences of multimodal scenarios. Indeed, prior studies
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Figure 1: (a): Common MLLM fine-tuning framework. (b): Sketch of classic LoRA module for
MLLM fine-tuning. (c): Partial modality inference setting. Take tokens of visual modality as an
example. (d-f): Partial modality inference performance of LoRA. Full modality: Regular case where
all multimodal tokens are processed by the LoRA module. Text-/Audio-/Visual-/Speech-only: Only
text/audio/visual/speech tokens are passed through the LoRA pathway at the prefilling stage during
inference. Results are based on LLaMA2.

in multimodal learning have demonstrated that the inherent heterogeneity of different modalities
necessitates modality-specific utilization strategies, rather than a fully unified way [24, 34].

To this end, we are motivated to observe the fine-tuning efficacy of the widely used LoRA strategy. A
common MLLM fine-tuning framework is shown in Figure 1a: encoded representation of non-text
modality (e.g., audio or visual) is first aligned with the text embedding space via a projector (usually
Q-former or MLP), after which the resulting multimodal tokens are integrated and processed jointly by
the LLM. In the efficient fine-tuning case, the LLM backbone is frozen, and parameters of additional
LoRA modules are optimized. Figure 1b provides the sketch of classic LoRA module. A and B
matrices are shared across different modalities.

To further observe how well tokens of different modalities are utilized, we conduct partial modality
inference experiments. The training stage retains the original setting, wherein all multimodal tokens
are processed by the LoRA module. Specifically, we evaluate the model’s performance when only
tokens from a selected modality are passed through the LoRA adaptation pathway at the prefilling
stage during inference. As illustrated in Figure 1c, visual token inference is used as an example.
And it should be noted that the pre-trained weights still receive full tokens of all modalities. Results
shown in Figure 1d-1f demonstrate a surprising phenomenon across three representative multimodal
scenarios, audio-visual-text case, visual-text case, and speech-text case. Text token inference can
achieve quite comparable performance to the regular full modalities case. However, Non-text token
inference (e.g., audio or visual) leads to a noticeable drop in performance.

The above results suggest that the optimization of all-modality-shared LoRA parameters is overly
influenced by text tokens, resulting in non-text tokens being less effectively utilized during fine-
tuning. Although these all-modality-shared parameters implicitly improve cross-modal interaction,
this phenomenon reveals the need to consider individual modality during fine-tuning. This fact
inspires us that unimodal and cross-modal adaptation are equally critical in the fine-tuning of
MLLMs, which is mostly ignored as mentioned above.

To this end, we propose the Multimodal low-rank Adaptation (MokA), a fine-tuning strategy designed
to achieve unimodal adaptation while explicitly enhancing cross-modal interaction. While MokA
retains the widely adopted low-rank decomposition matrices, it redefines the roles of matrices A
and B to better accommodate multimodal characteristics. Specifically, matrix A is designed to be
modality-specific, allowing each modality to compress information independently and thus avoid
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interference from others. After that, a cross-attention mechanism is introduced to strengthen the
interaction between text tokens and non-text tokens, emphasizing task-relevant features. Finally, a
shared multimodal matrix B projects the unimodal low-rank representations into a unified space,
facilitating effective alignment across modalities. These three parts jointly ensure both unimodal and
cross-modal adaptation. In experiments, noticeable improvement in multiple multimodal scenarios
demonstrates the effectiveness of our method. We think MokA represents a first-step attempt at
multimodal-aware adaptation, and further possibilities exist under our basis that simultaneously
accounts for both unimodal and cross-modal adaptation.

2 Method

2.1 Rethinking of low-rank adaptation in the multimodal scenario

LoRA [12] is based on the assumption that the weight updates during fine-tuning lie in a subspace
of low “intrinsic rank.” Rather than updating the entire pre-trained weight matrix directly, LoRA
introduces a low-rank decomposition approach, where the update ∆W ∈ Rd×k to a pre-trained matrix
W0 ∈ Rd×k is parameterized as the product of two much smaller matrices: B ∈ Rd×r and A ∈ Rr×k,
with r ≪ min(d, k). The resulting fine-tuned weight matrix W ′ is given by W0+∆W = W0+BA.
Therefore, for h = W0x, the modified update forward pass yields:

h = W0x+∆Wx = W0x+BAx. (1)
Here, W0 remains fixed during training, while only the matrices A and B are learned. To ensure
stable training, A is initialized using a uniform Kaiming distribution [11], and B is initialized to
zero, leading to an initial update ∆W = BA = 0 at the beginning of fine-tuning. LoRA [12] and its
variants have been extensively employed in the parameter-efficient fine-tuning of MLLMs [6, 7, 39].
These methods typically employ shared parameters to uniformly process tokens from all modalities,
implicitly facilitating cross-modal interactions during adaptation. However, our empirical results
reveal that such shared tuning leads to limited utilization of all modalities. This highlights the need to
consider individual modality during fine-tuning.

To better support multimodal adaptation, we argue that both unimodal and cross-modal updates
should be considered during fine-tuning. In other words, the model should be able to learn from each
modality independently while also ensuring the cross-modal interaction. Therefore, the design of
the update mechanism should ensure that both types of information are properly captured during the
forward pass:

h = W0x+∆Wx = W0x+∆W [xm1 ;xm2 ; · · · ;xmn ], (2)
= W0x+ [∆W1x

m1 ; ∆W2x
m2 ; · · · ; ∆Wnx

mn ]︸ ︷︷ ︸
unimodal adaptation

+∆Wcross[x
m1 ;xm2 ; · · · ;xmn ]︸ ︷︷ ︸

cross-modal adaptation

, (3)

where n is the number of modalities. xmi is the token sequence of modality i. ∆Wi is the unimodal
update parameters of modality i, and ∆Wcross is cross-modal update parameters.

2.2 Multimodal low-rank Adaptation (MokA)

Pretrained
Weights

Multimodal B

Cross 
Attention

Audio A Visual AText A

Figure 2: Illustration of MokA strategy.

Based on the above perspective, we propose Multimodal
low-rank Adaptation (MokA) strategy, a parameter-
efficient fine-tuning method tailored for the multimodal
nature of MLLMs. Considering the efficiency advantage of
LoRA, MokA retains the core idea of low-rank adaptation,
but redefines the roles of the projection matrices A and B
to better reflect the characteristics of multimodal scenarios.
By unimodal compression and explicitly reinforcing cross-
modal interaction, MokA enables both unimodal and cross-
modal adaptation, leading to more effective fine-tuning
of MLLMs. The overall structure of MokA is depicted
in Figure 2.

Concretely, MokA has three core parts: unimodal matrix A,
task-centric cross-attention, and shared multimodal matrix
B. Here we take the audio-visual-text case as an example, and other cases can be well extended.
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2.2.1 Unimodal matrix A

For an arbitrary pretrained weight W0 in the LLMs, we suppose its input sequence is x =
[xa

1 ;x
a
2 ; · · · ;xa

Na
;xv

1;x
v
2; · · · ;xv

Nv
;xt

1;x
t
2; · · · ;xt

Nt
]. Here {Ni}i∈{a,v,t} is the token length of

modality i. xa
1 is the first token of modality a, and so on. For simplicity, we use xi to denote the

token sequence of modality i. Then the whole input sequence can be rewritten as x = [xa;xv;xt].

To ensure the well compression of unique unimodal information and avoid the interruption from others,
matrix A is designed to be individual for each modality, allowing tokens from different modalities
to be processed independently through their respective parameter. The compressed sequence after
matrix A is:

Ax = [Aaxa;Avxv;Atxt], (4)
where {Ai}i∈{a,v,t} is the parameter of modality i. After processing by unimodal matrix A, embed-
dings of each modality are individually mapped into a low-rank space, without the potential influence
of other modalities.

2.2.2 Task-centric cross-attention

In the fine-tuning process of MLLMs, text and non-text tokens typically serve distinct roles. Specifi-
cally, under supervised instruction tuning, text tokens often function as task descriptions or prompts,
whereas non-text tokens (e.g., audio or visual inputs) primarily convey contextual information upon
which the task is based. The following example illustrates a typical instruction format:

<audio> <visual> Please answer the question: which clarinet makes the sound first?

Text token Key

Visual
token
Query

Text
token
Value

(    )softmax
New
visual
token

shortcut

Figure 3: Cross-attention part of MokA.
Take the visual token as an example.

In this case, <audio> and <visual> provide the event
information. “Please answer the question: which clarinet
makes the sound first?” describes the concrete task for
LLMs. Successfully answering such questions relies on
effectively capturing the semantic association between the
task description conveyed by text tokens and the event
cues provided by non-text tokens. Therefore, it becomes
intuitive and necessary to explicitly emphasize the most
relevant cross-modal information to support accurate rea-
soning. Since unimodal information has been extracted
individually after the processing of unimodal matrices A, this stage is well-suited for introducing
cross-modal interaction. Additionally, as the token embeddings are projected into a low-rank space,
the computational burden of performing cross-modal interaction is significantly reduced. Hence,
we place the cross-attention part after the low-rank compression to ensure both effectiveness and
efficiency. The concrete attention mechanism is illustrated in Figure 3, and is conducted as follows:

Att
(
Aaxa, Atxt, Atxt

)
= softmax

(
(Aaxa)(Atxt)⊤√

Nt

)
Atxt, (5)

Att
(
Avxv, Atxt, Atxt

)
= softmax

(
(Avxv)(Atxt)⊤√

Nt

)
Atxt. (6)

Then, the enhanced audio and visual tokens are:
Aaxa + λaAtt

(
Aaxa, Atxt, Atxt

)
, (7)

Avxv + λvAtt
(
Avxv, Atxt, Atxt

)
, (8)

where λa and λv are the hyperparameters that control the strength of explicit cross-modal interaction.
Finally, the sequence after cross-attention is:

Ax = [Aaxa + λaAtta,t,t;Avxv + λvAttv,t,t;Atxt]. (9)
Here we use Atti,t,t to simply denote the cross-attention between modality i and text. It should be
noted that while we adopt a cross-attention module to explicitly enhance the interaction between text
and non-text tokens, alternative designs that serve a similar purpose can also be considered. Further
discussion is provided in Section 4.4. In addition, in MokA, linear projections (Wq , Wk, and Wv) are
not included in the cross-attention module, since low-rank matrices A of each modality actually can
be considered as the linear projection in attention in this case. We also provide more discussion and
comparison in Appendix B.
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2.2.3 Shared multimodal matrix B

After unimodal compression and explicit cross-modal interaction enhancement, it becomes crucial to
project the resulting unimodal representations into a shared space to facilitate cross-modal alignment.
To this end, a shared multimodal matrix B is employed to perform this projection. The final output of
the MokA pathway is thus given by:

BAx = [B(Aaxa + λaAtta,t,t);B(Avxv + λvAttv,t,t);BAtxt]. (10)

2.2.4 Overview

In conclusion, in MokA, for a pretrained weight matrix W0 ∈ Rd×k, its update ∆W ∈ Rd×k is
parameterized as the product of much smaller matrices: B ∈ Rd×r and {Ai ∈ Rr×k}i∈{a,v,t}, with
r ≪ min(d, k). For input sequence x, the forward pass yields:

h = W0x+∆Wx = W0x+∆W [xa;xv;xt], (11)

= W0x+ [B(Aaxa + λaAtta,t,t);B(Avxv + λvAttv,t,t);BAtxt], (12)

= W0x+ [BAaxa;BAvxv;BAtxt]︸ ︷︷ ︸
unimodal adaptation

+ [λaBAtta,t,t;λvBAttv,t,t;0Nt
]︸ ︷︷ ︸

cross-modal adaptation

, (13)

where 0Nt
denotes the zero vector of dimension Nt, since text-token remains unchanged after cross-

attention. During fine-tuning, W0 remains unchanged, with Ai and B being subject to optimization.
Also, Ai is initialized using the uniform Kaiming distribution [11], while B is initialized to zero. It
leads to an initial update ∆W = 0 at the beginning of fine-tuning, to provide a smooth starting point.

Based on Equation 13, MokA ensures both unimodal and cross-modal adaptation, offering a more
tailored solution for fine-tuning MLLMs.

3 Training and evaluation details

3.1 Implement details

Our framework follows the common MLLM framework as illustrated in Figure 1a, but with MokA
strategy. Text input is processed by the corresponding LLM tokenizer, and non-text input is first
encoded by its encoder, and then aligned with the text embedding space via a projector. Here we use
Q-former followed by a two-layer MLP as the projector. Finally, all tokens are fed into LLM.

For the visual branch of audio-visual-text and visual-text scenarios, we use CLIP-ViT/L-14 [25] as
the visual encoder to extract the last layer patch level embedding of each frame or image. For the
audio branch of the audio-visual-text scenario, we use the BEATs [5] encoder to extract features. For
the speech branch of the speech-text scenario, OpenAI’s Whisper model [26] is used. The number of
query tokens in Q-Former of all branches is 32.

3.2 Training procedure and benchmarks

Our experiment of MLLM follows the widely used two-stage training paradigm: pre-training stage
that aims to cross-modal alignment and supervised instruction-tuning for downstream tasks.

Pre-training: LLM backbone is frozen. Projectors are trainable for cross-modal alignment. For
the visual branch of audio-visual-text and visual-text scenarios, trainable modules are trained on
video-LLaVA [19] dataset, including the video captioning and the image captioning tasks. For the
audio branch of the audio-visual-text scenario, trainable modules are trained on AudioCaps [14]
dataset on the audio captioning task. For the speech branch of the speech-text scenario, trainable
modules are trained on GigaSpeech-M [4] dataset on the speech recognition task. During pre-training,
each branch is trained for one epoch, using the AdamW optimizer with a cosine learning rate schedule.
The initial learning rate is 1e− 4 with a warmup ratio of 0.03.

Instruction-tuning: At this stage, we train the model on downstream tasks in different scenarios.
Trainable parameters include all projectors and our MokA module. For the audio-visual-text case,
the model is fine-tuned on the train set of MUSIC-AVQA [17], and AVE [30], respectively. For
the visual-text case, the model is fine-tuned on the LLaVA-Instruct-150K [20]. For the speech-text
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Figure 4: Framework of baselines that also follow our multimodal-aware basis, yet relying on more
parameters and offering limited cross-modal interaction.

case, the model is fine-tuned on the LibriSpeech [23], using the annotations provided by [28]. The
visual-text case is trained for one epoch, and other cases are trained for three epochs. Rank of
low-rank matrices is 4. The remaining settings are the same as the first stage.

Inference: To well assess the effectiveness of our fine-tuning strategy, we evaluate our trained models
on in-domain test sets or public benchmarks. Details are provided in the supplementary materials.

• Audio-visual-text: in-domain test set of MUSIC-AVQA and AVE dataset.
• Visual-text: public benchmarks: MMEpercep [9], MMBench [22], POPE [18], SEED-Bench [16].
• Speech-text: public benchmarks: MMAUmini−speech [27] as well as the foundation subset of

AIR-Benchspeech−en [37].

Large Language Model. For all three cases, LLaMA-2-7b-Chat [31], LLaMA-3-8B-Instruct [10],
and Qwen2-7B-Instruct [36] are used as the LLM base model, respectively. For the audio-visual-text
case, Qwen2.5-VL-7B-Instruct [2] is also used as the LLM base model. Throughout the training
process, weights of LLM are kept frozen. More experiments of Qwen3 are provided in Appendix A.

4 Experiments

4.1 Audio-visual-text scenario

To validate the effectiveness of our MokA fine-tuning strategy, we compare it with LoRA [12]
and its variants, including multiple LoRA, LoRAMoE [8], DoRA [21], HydraLoRA [29], Uni-modal
LoRA [1]. In addition, we also compare with two additional baselines, whose frameworks are provided
in Figure 4. Concretely, the Uni LoRA + MM LoRA strategy employs unimodal low-rank matrices
A to extract unimodal information independently, while incorporating an additional fully shared
multimodal LoRA module to implicitly promote cross-modal interaction. The Uni LoRA + MM
LoRA + Gate variant further introduces a gating mechanism to dynamically integrate the outputs of
the Uni LoRA and MM LoRA branches for improved fusion. These two baselines incorporate our
multimodal-aware basis that ensures both unimodal and cross-modal adaptation, but involve more
parameters and offer limited cross-modal interaction. Based on the results in Table 1, we can have
the following observations:

Our proposed MokA method achieves the superior overall performance across multiple audio-visual-
text datasets, consistently outperforming other baselines and compared methods. While MokA
introduces a slight increase in parameter scale compared to standard LoRA, this does not account for
the observed performance improvements. Based on the Table 1, multiple LoRA, a baseline that uses
3 A matrices and B A matrices, underperforms both standard LoRA and MokA. Simply increasing
the number of low-rank matrices does not necessarily lead to better fine-tuning performance. This
suggests that MokA’s advantage stems not from parameter quantity, but from its insurance for both
unimodal and multimodal adaptation.

The mentioned two baselines, Uni LoRA + MM LoRA and Uni LoRA + MM LoRA + Gate, achieve
competitive results. These results further support the validity of our multimodal-aware basis that
unimodal and cross-modal adaptation are both essential for the fine-tuning of MLLMs. However, de-
spite their effectiveness, MokA achieves superior results with fewer parameters and further enhanced
cross-modal interactions.

In addition, Qwen2.5VL with LoRA outperforms both LLaMA2 and Qwen2 under the LoRA fine-
tuning setting. But when using MokA, the performance of Qwen2.5VL is slightly lower than that
of LLaMA2 and Qwen2. A possible reason is that the official visual connector in Qwen2.5VL,
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Table 1: Evaluation results of LoRA, its variants, and our MokA on audio-visual-text datasets,
MUSIC-AVQA and AVE. #A and #B are the number of low-rank matrices. Here N = 3 refers to the
number of modalities.

LLM Method MUSIC-AVQA AVE #A #B
LoRA [12] 73.41 69.84 1 1

Multiple LoRA 72.66 71.77 N N

LoRAMoE [8] 73.57 72.81 N N

DoRA [21] 73.97 72.18 1 1
HydraLoRA [29] 74.12 72.27 1 N

Uni-modal LoRA [1] 74.37 71.44 N N

Uni LoRA + MM LoRA 74.43 72.36 N + 1 2

Uni LoRA + MM LoRA + Gate 74.94 73.56 N + 1 2

LLaMA2

MokA 75.71 74.68 N 1

LoRA 72.83 72.13 1 1
Multiple LoRA 72.71 72.11 N N

LoRAMoE [8] 73.48 72.83 N N

DoRA [21] 73.29 72.91 1 1
HydraLoRA [29] 73.14 72.59 1 N

Uni-modal LoRA [1] 73.62 73.14 N N

Uni LoRA + MM LoRA 74.09 73.35 N + 1 2

Uni LoRA + MM LoRA + Gate 74.71 73.96 N + 1 2

Qwen2

MokA 75.26 74.48 N 1

LoRA 73.00 71.38 1 1
Multiple LoRA 73.13 71.27 N N

LoRAMoE [8] 73.28 71.91 N N

DoRA [21] 73.37 71.06 1 1
HydraLoRA [29] 73.04 71.26 1 N

Uni-modal LoRA [1] 73.46 72.11 N N

Uni LoRA + MM LoRA 73.75 72.27 N + 1 2

Uni LoRA + MM LoRA + Gate 73.81 72.68 N + 1 2

Qwen2.5-VL

MokA 74.87 73.14 N 1

LoRA 78.31 76.91 1 1
Multiple LoRA 78.63 77.02 N NLLaMA3

MokA 79.15 77.81 N 1

which serves a similar role to the projector used in our other LLM variants, remains frozen during
fine-tuning. As a result, only the newly introduced audio branch is trainable, which may have limited
the full potential of our method. But MokA still introduces noticeable improvement in this case,
compared to other methods. In summary, our method achieves considerable improvement across
various LLM backbones, demonstrating its broad versatility.

4.2 Visual-text and speech-text scenarios

To further validate our method across a broader range of multimodal scenarios, we conducted
experiments beyond the challenging audio-visual-text case. Specifically, our method is further
verified on two representative multimodal scenarios: visual-text and speech-text. For these tasks, we
adopted three different LLM backbones, LLaMA2, LLaMA3, and Qwen2. The corresponding results
are presented in Table 2 and Table 3. The experimental results demonstrate that our method achieves
stable and consistent performance gains across multiple benchmark datasets, further confirming its
effectiveness. This indicates the versatility of MokA in handling different multimodal combinations
and LLM architectures.
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Table 2: Evaluation results of LoRA, its variants, and our MokA on visual-text benchmarks. #A and
#B are the number of low-rank matrices. Here N = 2 refers to the number of modalities.

LLM Method MMEpercep MMBench POPE SEED-Bench #A #B
LoRA 908.52 50.64 70.28 39.71 1 1

Multiple LoRA 882.87 49.83 68.20 38.44 N N

LoRAMoE [8] 938.52 51.98 71.15 39.13 N N

DoRA [21] 786.47 51.31 71.07 38.96 1 1
HydraLoRA [29] 774.47 47.33 70.87 38.81 1 N

Uni-modal LoRA [1] 992.31 51.98 72.24 39.27 N N

Uni LoRA + MM LoRA 972.87 50.96 73.39 39.74 N + 1 2

Uni LoRA + MM LoRA + Gate 988.37 52.01 73.48 39.91 N + 1 2

LLaMA2

MokA 1025.86 52.74 74.23 40.45 N 1

LoRA 1062.34 57.89 81.17 55.25 1 1
Multiple LoRA 1103.28 57.01 80.96 55.13 N N

LoRAMoE [8] 1157.39 57.29 81.29 56.39 N N
DoRA [21] 1024.42 56.19 80.75 55.03 1 1

HydraLoRA [29] 1098.25 56.42 81.34 54.67 1 N

Uni-modal LoRA [1] 1189.47 57.39 81.12 56.21 N N

Uni LoRA + MM LoRA 1191.81 57.17 81.46 56.84 N + 1 2

Uni LoRA + MM LoRA + Gate 1201.49 57.91 81.72 57.18 N + 1 2

Qwen2

MokA 1292.37 59.06 82.33 58.10 N 1

LoRA 1030.64 68.45 77.47 56.34 1 1
Multiple LoRA 1032.74 68.79 78.73 56.06 N NLLaMA3

MokA 1072.67 69.90 79.27 56.60 N 1
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Figure 5: Partial modality inference performance of MokA w/o cross-attention. Full modality:
Regular case where all multimodal tokens are processed by the MokA module w/o cross-attention.
Text-/Audio-/Visual-/Speech-only: Only text/audio/visual/speech tokens are passed through the LoRA
pathway at the first generation step during inference. Results are based on LLaMA2.

4.3 Partial modality inference of MokA

To further examine how effectively MokA leverages tokens from different modalities, we also conduct
partial modality inference experiments where only tokens from a selected modality are passed through
the LoRA adaptation pathway at the first generation during inference. It should be noted that the
evaluated model is MokA w/o cross-attention, as cross-attention computation requires the presence
of both text and non-text tokens. The results, presented in Figure 5, show that MokA w/o cross-
attention significantly enhances the utilization of individual modalities compared to LoRA (as shown
in Figure 1d-1f). These findings highlight that the multimodal-aware design of MokA facilitates more
effective use of all available modalities.

4.4 Cross-modal interaction variants

In the original MokA framework, cross-attention is employed to explicitly strengthen the interaction
between text and non-text tokens, thereby facilitating improved cross-modal adaptation. As previously
discussed, alternative modules that similarly enhance this interaction can also be considered. In this
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Table 3: Evaluation results of LoRA, its variants, and our MokA on speech-text benchmarks,
MMAUmini−speech and AIR-Benchspeech−en. #A and #B are the number of low-rank matrices.
Here N = 2 refers to the number of modalities.

LLM Method MMAU AIR-Bench #A #B
LoRA 30.33 31.75 1 1

Multiple LoRA 29.73 31.91 N N

LoRAMoE [8] 27.63 33.97 N N

DoRA [21] 26.73 34.36 1 1
HydraLoRA [29] 29.13 31.66 1 N

Uni-modal LoRA [1] 38.14 35.14 N N

Uni LoRA + MM LoRA 37.54 32.56 N + 1 2
Uni LoRA + MM LoRA + Gate 32.13 33.04 N + 1 2

LLaMA2

MokA 38.44 39.64 N 1

LoRA 50.15 44.55 1 1
Multiple LoRA 50.45 41.13 N N

LoRAMoE [8] 50.75 42.99 N N
DoRA [21] 52.55 44.11 1 1

HydraLoRA [29] 53.45 43.94 1 N

Uni-modal LoRA [1] 54.05 47.01 N N

Uni LoRA + MM LoRA 54.16 43.55 N + 1 2
Uni LoRA + MM LoRA + Gate 54.35 46.15 N + 1 2

Qwen2

MokA 55.26 49.17 N 1

LoRA 46.25 43.04 1 1
Multiple LoRA 44.74 43.87 N NLLaMA3

MokA 51.05 44.39 N 1

Table 4: Evaluation results of MokA and variants on audio-visual-text and visual-text cases. Results
are based on LLaMA2.

Method Music-AVQA AVE MMEpercep MMBench POPE SEED-Bench
LoRA 73.41 69.84 908.52 50.64 70.28 39.71

Multiple LoRA 72.66 71.77 882.87 49.83 68.20 38.44
Cross-attention* 74.94 72.59 955.18 51.25 72.94 39.91
Naive interaction 75.04 73.18 996.73 51.49 73.52 40.17

MokA 75.71 74.68 1025.86 52.74 74.23 40.45

section, we explore several variants of the cross-modal interaction module, as summarized in Table 4.
The cross-attention* variant also adopts a cross-attention mechanism; however, it uses text tokens
as queries. Consequently, the updated text tokens integrate information from the relevant non-text
tokens—reversing the direction of interaction compared to the original MokA. The naive interaction
variant performs a simple, uniform mapping from text tokens to non-text tokens without employing
any attention mechanism.

Experimental results show that all proposed variants outperform the LoRA baseline, demonstrating the
general effectiveness of explicitly enhancing cross-modal interactions. However, the cross-attention*
variant performs slightly worse than the others. One possible explanation is that, unlike in other
variants where text tokens remain unchanged, this variant alters text tokens by integrating non-text
features. Although cross-modal interaction is enhanced, the modification of text representations
may adversely affect language modeling capabilities. In addition, while naive interaction yields
competitive results, MokA achieves further improvement through its dynamic attention mechanism.
These findings suggest that the core idea of explicitly reinforcing cross-modal interactions is beneficial,
and the effectiveness is not restricted to one specific module design.
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4.5 Ablation study
Table 5: Ablation study of MokA. CA denotes Cross-
Attention. Results are based on LLaMA2.

Method MUSIC-AVQA POPE AIR-Bench
LoRA [12] 73.41 70.28 31.75

Multiple LoRA 72.66 68.20 31.97
MokA w/o CA 74.85 73.57 33.25

MokA 75.71 74.23 39.64

To thoroughly validate the efficacy of
our method, we conduct ablation stud-
ies across all three multimodal sce-
narios. Results are shown in Table 5.
Based on the results, even without the
cross-attention module, MokA w/o
CA outperforms the LoRA baseline,
demonstrating the effectiveness of en-
hancing unimodal adaptation. Furthermore, the introduction of the cross-attention module leads to
additional performance improvements, indicating the benefit of explicitly enhancing cross-modal
adaptation. These results indicate the necessity of each part in MokA.

4.6 Efficiency evaluation

Table 6: Efficiency evaluation and performance comparison.
Here, trainable parameters include low-rank matrices and all
projectors. Results are based on LLaMA2.

Method Trainable / Total
Parameters

Avg. forward
time per sample

POPE
Acc

LoRA [12] 1.27% 1.000 × 70.28
Multiple LoRA 1.43% 1.006 × 68.20

MokA 1.33% 1.069 × 74.23

To enable a more comprehensive
comparison, we further evaluate
the proposed MokA and LoRA
baselines on the proportion of
trainable parameters in the full
model, and inference latency. As
reported in Table 6, although
MokA introduces additional pa-
rameters due to the inclusion of
more low-rank matrices, the in-
crease is quite modest compared
to the full LLM. Also, despite
MokA incurs a slight increase in inference latency compared to standard LoRA, it achieves a
notable performance gain of 3.95% on the POPE benchmark. These results suggest that the addi-
tional computational cost introduced by MokA is acceptable, and the performance improvement is
considerable. More detailed efficiency evaluations are provided in Appendix D.

5 Related works

MLLMs built upon powerful LLM backbones are increasingly demonstrating impressive capabilities
across diverse downstream tasks [33, 13]. However, fine-tuning these models remains computationally
expensive, prompting growing interest in parameter-efficient fine-tuning (PEFT) techniques that
reduce memory and storage overhead during adaptation. Among them, LoRA has emerged as a
widely adopted, and researchers have proposed several variants to further improve its efficiency and
flexibility [8, 21, 29, 1]. For instance, LoRAMoE [8] introduces multiple LoRA heads combined via
a gating mechanism, while DoRA [21] focuses solely on optimizing the gradient direction, enabling
more efficient updates. Despite these advancements, most PEFT strategies for MLLMs are direct
extensions of LLM techniques and fail to account for the inherent characteristics of multimodal
learning. To address this gap, we propose MokA, a fine-tuning strategy specifically designed for
MLLMs. It explicitly ensures both unimodal and cross-modal adaptation to better preserve unimodal
representations and enhance cross-modal interaction, offering a targeted solution for efficient and
effective multimodal adaptation.

6 Discussion

In this paper, we argue that both unimodal adaptation and cross-modal adaptation are essential parts
for the effective fine-tuning of MLLMs, yet have largely been neglected before. To this end, we
propose Multimodal low-rank Adaptation (MokA) for efficient multimodal fine-tuning. MokA
redefines the roles of low-rank matrices A and B, ensuring unimodal information is preserved while
enhancing cross-modal interaction by cross-attention. We think MokA is a preliminary step toward
multimodal-aware adaptation, highlighting the potential for future extensions that jointly consider
both unimodal and cross-modal adaptation.
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A Extension to Qwen3

To further validate our MokA method, we equip it with the latest Qwen3 [35] model. Qwen3-8B is
used as the LLM base model. Throughout the training process, weights of LLM are kept frozen.

Results are shown in Table 7. We conduct experiments in the audio-visual-text case. Our method
can still deliver improvements compared to the LoRA baseline, with the latest Qwen3 model. These
findings provide additional evidence of the effectiveness and scalability of MokA.

Table 7: Evaluation results of LoRA, its variants, and our MokA on audio-visual-text datasets,
MUSIC-AVQA and AVE. #A and #B are the number of low-rank matrices. Here N = 3 refers to the
number of modalities.

Method MUSIC-AVQA AVE #A #B
LoRA 78.57 74.17 1 1

Multiple LoRA 78.24 74.01 N N

MokA 79.54 75.38 N 1

B MokA with linear projection

In MokA, linear projections (Wq , Wk, and Wv) are not included in the cross-attention module:

Att
(
Aaxa, Atxt, Atxt

)
= softmax

(
(Aaxa)(Atxt)⊤√

Nt

)
Atxt, (14)

Att
(
Avxv, Atxt, Atxt

)
= softmax

(
(Avxv)(Atxt)⊤√

Nt

)
Atxt. (15)

The reason is that low-rank matrices A of each modality actually can be considered as the linear
projection in attention in this case. Therefore, we do not introduce other linear projections in the
cross-attention module. In addition, projections of key and value are shared in this case (At). In
fact, this kind of projection sharing strategy has been widely used to increase the efficiency of
attention [15, 32]. For example, in the Linformer [32], it also utilizes the sharing key-value projection
strategy to reduce computation cost. What’s more, here non-text tokens are used as queries to
merge textual information into non-text modalities. In this way, cross-modal interaction is explicitly
enhanced, while text tokens are kept unchanged to avoid potential disruption to the model’s original
strong text understanding capability.

To further validate the idea of cross-attention, we conduct experiments that include linear projections
in cross-attention. The concrete attention mechanism with linear projection is conducted as follows,
and the notation is consistent with the main manuscript:

Att
(
Aaxa, Atxt, Atxt

)
= softmax

(
(W a

q A
axa)(W t

kA
txt)⊤

√
Nt

)
W t

vA
txt, (16)

Att
(
Avxv, Atxt, Atxt

)
= softmax

(
(W v

q A
vxv)(W t

kA
txt)⊤

√
Nt

)
W t

vA
txt. (17)

Here, W a
q is the linear projection of the audio query, and the others are similar.

In Table 11, we provide the results in the audio-visual-text and visual-text cases. Based on the results,
MoKA with linear projection, yields improvements compared with LoRA baseline. However, it does
not consistently outperform the original MoKA and introduces additional trainable parameters along
with increased computational overhead.

C More than three modality case

In this section, we extend our experiments to scenarios with more than three modalities. Specifically,
we consider a four-modality setting involving audio, visual, point cloud, and language data, and
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evaluated it on the MCUB-3 benchmark [3]. In this 3+ modality case, LoRA has an accuracy of
37.41%. Our MokA has an accuracy of 45.58%, indicating its scalability and effectiveness under 3+
modality cases.

D Efficiency evaluation

Compared to LoRA, MokA introduces additional A matrices and a cross-attention module. However,
it should be noted that the additional computational cost of MokA only comes from the cross-attention
module, which is flexible and can be replaced by a more efficient strategy if needed. In this section,
we provide a more detailed efficiency analysis comparing FLOPs, GPU memory usage, and average
forward time per sample (proportional to training time). For clarity, we report these metrics for the
two-modality (VL), three-modality (AVL), and four-modality (AVPL) settings. As shown in the
tables, MokA’s extra computational and memory cost remains limited and acceptable for typical
multimodal scenarios.

Table 8: Efficiency evaluation between LoRA and MokA on various datasets. Results are based on
LLaMA2.

VL (MME_percep) FLOPs Memory Usage Avg. forward time/sample
LoRA 1.000x 1.000x 1.000x
MokA 1.009x 1.001x 1.069x

AVL (MUSIC-AVQA) FLOPs Memory Usage Avg. forward time/sample
LoRA 1.000x 1.000x 1.000x
MokA 1.021x 1.001x 1.134x

AVPL (MCUB-3) FLOPs Memory Usage Avg. forward time/sample
LoRA 1.000x 1.000x 1.000x
MokA 1.013x 1.002x 1.213x

E Audio-visual interaction

In the original MokA, only the attention between text and non-text tokens is considered. It is
motivated by the fact that text modality typically conveys the question or task description, while
the audio and visual modalities provide environmental information, in the instruction. Therefore,
cross-attention is applied to explicitly enhance the interaction between the task (text token) and
environment (non-text token). It is also worth exploring whether further interactions between the
scene modalities themselves—i.e., audio and visual—can be beneficial. To this end, we conduct
additional ablation studies. Experiments are conducted based on LLaMA2. The table reports the
results for audio-visual attention with both audio as query and video as query. The results show
that introducing additional audio-visual attention can bring gains, but it is not very noticeable. The
potential benefit from further enhancing explicit audio-visual interactions is relatively limited.

Table 9: Evaluation results of LoRA and MokA variants on audio-visual-text datasets. Results are
based on LLaMA2.

Method MUSIC-AVQA AVE
LoRA 73.41 69.84
MokA 75.71 74.68

MokA w/ audio query att. 75.78 74.53
MokA w/video query att. 75.76 74.81
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F Ablation study of rank

In this section, we conduct experiments of MokA with different ranks. It consistently outperforms
the LoRA baseline across different rank settings.

Table 10: Evaluation results of LoRA and MokA on MUSIC-AVQA and AVE with different ranks.
Results are based on LLaMA2.

Method MUSIC-AVQA AVE Rank
LoRA 73.41 69.84 r=4
LoRA 73.56 70.01 r=8
LoRA 73.73 70.07 r=12
MokA 75.71 74.68 r=4
MokA 74.68 74.71 r=8
MokA 74.89 74.36 r=12

G Case study of cross-attention in MokA

In this section, we conduct a case study on the cross-attention module in MokA. This module explicitly
integrates task description information from text tokens with non-text tokens, thereby facilitating
cross-modal interaction. Here we provide two samples from an audio-visual-text scenario, as shown
in Figure 6. The visualization shows the cross-attention weights of the qproj at the 10−th layer.
The LLM model is LLaMA2. The results indicate that during the process of explicit cross-modal
integration (e.g., cross-attention), text tokens that are more related to a given modality can receive
higher attention weights. For example, the token “sound” receives greater attention in relation to
the audio modality. This cross-modal integration can better facilitate the alignment and interaction
between text tokens and non-text tokens.

Table 11: Experiments of MokA with linear projection under the audio-visual-text and visual-text
cases. The LLM backbone is LLaMA2.

Method Music-AVQA MMEpercep MMBench POPE SEED-Bench
LoRA 73.41 908.52 50.64 70.28 39.71

Multiple LoRA 72.66 882.87 49.83 68.20 38.44
MokA w/ linear projection 73.83 926.77 53.97 72.43 41.01

MokA 75.71 1025.86 52.74 74.23 40.45

H Broader impacts

In this paper, we aim to contribute to the efficient fine-tuning of MLLM, particularly how they well
process and integrate information from different modalities. Improvements in this area may support
downstream applications in fields like autonomous driving and education. At the same time, this
line of research carries certain risks. For example, there is a possibility that MLLM could reflect or
amplify biases present in the training data, or be misused in sensitive contexts. We do not directly
address these issues in this work, but acknowledge them as important areas for future research. All
datasets used are publicly available, and we follow standard filtering procedures to reduce exposure
to harmful content.

I Datasets

Information about the datasets used in our experiments is provided in this section.

Video-LLaVA [19] used a mixed dataset of images and videos for video captioning and image
captioning tasks. The dataset includes a 665k image-text instruction and a 100k video-text instruction.
This dataset is used for pre-training the visual branch.
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how many types of musical instrucments sound in the video ?

how many types of musical instrucments sound in the video ?

Weight of visual-text attention 

Weight of audio-text attention 

(a) Sample 1.

where is the first sound ing instrument ?

where is the first sound ing instrument ?

Weight of visual-text attention 

Weight of audio-text attention 

(b) Sample 2.

Figure 6: Cross-attention weight visualization, where deeper colors indicate higher attention weights.

AudioCaps [14] dataset is used for the audio captioning task. It consists of 46K pairs of audio clips
and text descriptions. This dataset is used for pre-training the audio branch.

GigaSpeech-M [4] is a 1000h dataset for speech recognition task. This dataset is used for pre-training
the speech branch.

MUSIC-AVQA [17] is an audio-visual-text dataset, which is introduced to support spatio-temporal
understanding of musical content. It offers 45K QA pairs across 33 question templates that span
multiple modalities and question types.

AVE [30] is an audio-visual-text dataset. It focuses on the audio-visual event localization task. This
dataset covers 28 event classes and consists of 4,143 samples.

LLaVA-Instruct-150K [20] is a set of GPT-generated multimodal instruction-following data. It is
used for instruction fine-tuning for the visual-text case.

LibriSpeech [23] is a 960-hour dataset. We use the instruction from [28] for instruction fine-tuning of
the speech-text case.

MMEpercep [9] is the perception subset of the MME benchmark, covering a total of 10 subtasks for
the evaluation of the visual-text perception ability.

MMBench [22]is a collection of benchmarks to evaluate the visual-text understanding capability. It
has 3,000 multiple-choice questions covering object detection, text recognition, action recognition,
image captioning, relation reasoning, and so on.

POPE [18] is a benchmark that is used for evaluating the visual-text understanding ability of MLLM.
The used image is the test set of MSCOCO dataset.

SEED-Bench [16] consists of 19K multiple-choice questions with accurate human annotations for
evaluating the visual-text understanding ability of MLLM.

MMAUmini−speech [27] is the speech subset of MMAU-mini benchmark. This benchmark is used
for evaluating the speech-text understanding ability of MLLM.

AIR-Benchspeech−en [37] is the English speech subset of the foundation part of AIR-Bench. This
benchmark is used for evaluating the speech-text understanding ability of MLLM.
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