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Instruction:

Step out of the bedroom doorway, and turn to your left, orienting yourself
toward the main passage, Walk straight ahead, following the corridor and
passing through the living room area. Continue forward until you reach

the study, then step inside.

!

semantics semantics

Dual-Horizon World Model Prediction

semantics

Hierarchical VLM planning

<summary> The robot has left the bedroom
and is positioned at the the corridor. </summary>

<plan> Pass through the living room area, then
continue forward until reaching the study
</plan>
<actions> forward, forward, forward,
forward, forward </actions>

Current

Fig. 1: NavForesee integrates hierarchical language planning with dual-horizon predictive foresight. The planner decomposes instructions
into milestone-based sub-goals, while the world model predicts high-level environmental features for long- and short-term guidance,

producing coherent navigation actions.

Abstract— Embodied navigation for long-horizon tasks,
guided by complex natural language instructions, remains a
formidable challenge in artificial intelligence. Existing agents
often struggle with robust long-term planning about unseen
environments, leading to high failure rates. To address these
limitations, we introduce NavForesee, a novel Vision-Language
Model (VLM) that unifies high-level language planning and pre-
dictive world model imagination within a single, unified frame-
work. Our approach empowers a single VLM to concurrently
perform planning and predictive foresight. Conditioned on the
full instruction and historical observations, the model is trained
to understand the navigation instructions by decomposing the
task, tracking its progress, and formulating the subsequent
sub-goal. Simultaneously, it functions as a generative world
model, providing crucial foresight by predicting short-term
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environmental dynamics and long-term navigation milestones.
The VLM’s structured plan guides its targeted prediction,
while the imagined future provides rich context to inform
the navigation actions, creating a powerful internal feedback
loop of perception-planning/prediction-action. We demonstrate
through extensive experiments on the R2R-CE and RxR-
CE benchmark that NavForesee achieves highly competitive
performance in complex scenarios. Our work highlights the
immense potential of fusing explicit language planning with
implicit spatiotemporal prediction, paving the way for more
intelligent and capable embodied agents.

I. INTRODUCTION

Embodied navigation, a cornerstone challenge in artifi-
cial intelligence, has recently witnessed remarkable progress
driven by the advent of Vision-Language Models (VLMs)
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[11, [2], [3], [4], [5]. These models endow agents with
the ability to perceive, interpret instructions, and operate in
complex environments. Despite these advances, a significant
performance gap persists in long-horizon tasks, where agents
frequently fail to maintain course, comprehend observations,
or make consistently correct decisions. This gap stems from
two primary limitations: (1) a planning and memory deficit,
as deployable VLMs often have limited context windows
and planning capabilities, causing them to get “lost” in
the navigation environment[6], [7], [8]; and (2) a lack of
predictive foresight, as current models are fundamentally
reactive and cannot anticipate future environmental states to
guide their actions proactively [9], [10], [11].

Existing research has pursued these challenges on separate
fronts. One trajectory enhances VLM reasoning through cu-
rated datasets and Chain-of-Thought (CoT) prompting [12],
[13]. The other develops world models to predict future
states, informing action planning [14], [15]. However, a crit-
ical oversight is the disconnection between these paradigms.
A VLM-centric agent can suffer from semantic hallucina-
tions, where its plan disconnects from visual reality, while
a world model without language guidance can experience
semantic drift, its predictions becoming untethered from the
instructional goal.

We posit that VLM planning and predictive foresight
should not be separate but unified and mutually reinforc-
ing within a single VLM [16]. To this end, we introduce
NavForesee as in Figure 1, a unified model that integrates
multi-modal understanding with world model generation.
Our approach is inspired by human navigation, which is not a
continuous, low-level process but a hierarchical one centered
on milestones. Humans typically navigate by heading to-
wards a sequence of meaningful landmarks, largely ignoring
the minutiae of the path between them. We argue that an
artificial agent should do the same. NavForesee adopts this
strategy by operating through two synergistic functions: (1)
Hierarchical Language planning. As a planner, NavForesee
generates a high-level plan by summarizing the navigation
task into completed sub-instructions, identifying the current
sub-instruction, and formulating the next steps as semantic
action "trunks.” This grounds the agent’s planning in the
overall instruction. (2) Dual-Horizon Predictive Foresight.
As a world model, NavForesee “imagines” the future on two
timescales. For long-term guidance, it predicts the key visual
features of the environment at the completion of the current
sub-instruction—effectively envisioning the next milestone.
For short-term execution, it forecasts immediate future fea-
tures to enhance local awareness, enabling robust obstacle
avoidance and better understanding of environmental dynam-
ics. Inspired by latent-space world models [17], [18], [19],
[15], this prediction deliberately avoids computationally ex-
pensive pixel-level generation. Instead, NavForesee forecasts
a compact set of high-level features—depth, DINOv2, and
SAM features—that capture essential geometric and seman-
tic information as in DreamVLA. The predicted features are
fed to an action policy module which is simply an MLP to
generate continuous waypoints and flags for arriving or not.

By tightly coupling hierarchical planning with dual-horizon
predictive foresight, NavForesee generates coherent, goal-
oriented actions, guided by both a long-term vision of its
milestones and an immediate awareness of its surroundings.

We conducted extensive experiments on the R2R-CE [20]
and RxR-CE [21] benchmarks. Training exclusively on the
publicly available R2R-CE and RxR-CE datasets, NavFore-
see demonstrates highly competitive performance, achieving
a Success Rate (SR) of 66.2% and an Oracle Success Rate
(OSR) of 78.4% on the R2R-CE benchmark—comparable to
state-of-the-art methods. In summary, our key contributions
are threefold:

o We propose NavForesee, a VLN framework that unifies
vision—language model (VLM) planning with world
model prediction for navigation tasks.

« We introduce a hierarchical language planning paradigm
that addresses long-instruction, goal-oriented missions
by explicitly tracking mission progress and generating
concise textual sub-plans.

e We design a dual-horizon world model prediction
mechanism for both short-term execution and long-
term milestone navigation, implicitly forming a per-
ception—planning and prediction—action loop that guides
agent behavior.

II. RELATED WORKS
A. Visual Language Navigation

Vision-and-Language Navigation (VLN) requires an em-
bodied agent to interpret natural language instructions, per-
ceive visual surroundings, and generate a sequence of actions
to reach a specified goal. The advent of large-scale pre-
trained VLMs has catalyzed significant progress, largely
superseding earlier methods based on topological graphs
[22], [23], [24], top-down semantic maps [25], [26], [27],
or instruction augmentation [28]. Recent works leveraging
VLMs can be broadly categorized into two main paradigms.
The first uses the VLM as a high-level planner, auto-
regressively generating action plans [29], [30], [31] or textual
trajectories [32]. While strong in reasoning, this step-by-step
generation is prone to error accumulation and slow inference.
The second employs the VLM as an end-to-end policy,
directly mapping inputs to actions. However, this often leads
to overfitting on training scenes and underutilizes the VLM’s
high-level reasoning capabilities.

To bridge the gap between these two approaches, dual-
system architectures have been proposed [6], [33]. These
models often adopt a “’Fast-and-Slow” reasoning paradigm,
combining a deliberative ’slow” system for high-level rea-
soning with a lightweight “fast” reactive controller for low-
level execution. Reinforcement learning is frequently em-
ployed to align the outputs of both systems and bootstrap the
learning of coherent reasoning-action patterns. Despite this
progress, a fundamental challenge remains: long, complex
reasoning chains (e.g., long CoTs) do not always align with
the spatial and dynamic realities of the environment. Fur-
thermore, frequent or periodic elaborate reasoning processes
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Fig. 2: VLM-driven hierarchical navigation plan dataset generation. Episodes from R2R-CE and RxR-CE are processed by
Gemini 2.5 Pro, which decomposes long instructions into sub-instructions and identifies keyframe milestones. To generation of
waypoint-level reasoning labels, waypoints are sampled between milestones annotated with a navigation summary, future plan, and action

(forward, left, right, or stop).

may be unnecessary, as human navigation often relies on
simpler, high-level semantic plans rather than continuous,
detailed deliberation.

B. Navigation World Model

A world model is designed to learn a predictive model
of an environment, forecasting future states from historical
observations and optional conditioning information, such as
actions or instructions. Predictions can be generated in either
raw pixel space or a more compact latent space [18]. The
concept has gained significant traction recently, propelled by
large-scale video generation models like Sora([34], which
can produce long-term, consistent, even interactive video
sequences from text prompts. A key application of world
models in robotics is to serve as a simulation engine, allow-
ing an agent to “imagine” the outcomes of different action
sequences and evaluate control policies before execution
[16], [19].

In the context of visual navigation, recent works have
begun to leverage world models to provide agents with
environmental foresight. For instance, NavMorph utilizes a
Recurrent State-Space Model (RSSM) to model environmen-
tal dynamics in a compact latent space, refining the agent’s
policy with imagined future states [11]. Similarly, HNR [9]
advocates for predicting multi-level semantic features instead
of raw pixels, enabling faster and higher-quality imagination
to evaluate multiple next-step actions in parallel. Other ap-
proaches, like NWM [35], use a controlled video generation
model to plan entire trajectories through simulation. Despite
their promise, existing world models for navigation face
two primary limitations. First, action-conditioned models that
rely on extensive trajectory sampling and evaluation are
often computationally prohibitive, rendering them infeasible
for deployment on resource-constrained agents. Second, and
more critically for our work, prior research has focused
almost exclusively on learning environmental dynamics,
largely neglecting to integrate this predictive capability with
the high-level language reasoning abilities of modern VLMs.

This separation leaves a critical gap, which our work aims
to address by unifying these two powerful paradigms.

III. METHODS
A. Problem Formulation

We target instruction-guided navigation missions in which
an embodied agent must interpret a natural language in-
struction [ and navigate from a given start position to an
intended goal location, strictly following the described route.
The challenge lies in robustly understanding the instruction,
maintaining situational awareness over long horizons, and
deciding actions that lead to successful navigation in unseen
environments.

At time step ¢, the agent perceives the environment
and obtains a panoramic RGB observation o;. It main-
tains a memory of the past H observations, O;_pg.;—1 =
[0+—fr, ... ,0t—1], to support temporal reasoning. The navi-
gation policy produces a sequence of K future waypoints
Wi+ K € REX5 where each waypoint is defined as

wy = [Ty, Yr,sin by, cos Oy, 4]

with (z¢, y¢) denoting planar positions, 6; the heading angle,
and the binary flag ¢; indicating whether a stop action
should be triggered. Unless all predicted actions are marked
as stop, the agent continuously moves following the gen-
erated waypoints.

To solve this problem, we adopt Qwen2.5-VL as our
backbone and extend it with two complementary modules.
First, we enable hierarchical planning by decomposing the
full instruction into sequential sub-instructions, identifying
completed ones and predicting the next step under the cur-
rent context—Ileveraging the model’s language understand-
ing capabilities and pretraining on our constructed dataset.
Second, we integrate world model foresight for predict-
ing short- and long-term environmental changes, enhanc-
ing vision—language coherence and yielding more reliable
action policies. Together, these capabilities allow the agent
to imitate human navigation behaviors, combining explicit
language planning with implicit spatiotemporal prediction.
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Fig. 3: Overall architecture of NavForesee. The model is built on the Qwen2.5-VL-3B-Instruct backbone, integrating two complementary
functionalities: (1) VLM-based hierarchical planning and (2) world model-based dual-horizon visual prediction. For hierarchical planning,
textual instruction and visual observations are encoded via Qwen’s original multimodal encoders to produce auto-regressive sub-goal
plans. For prediction, a position encoder encodes the agent’s relative pose, and short- and long-horizon dream queries (depth and semantic
subqueries) are appended to multimodal embeddings. These queries, processed through structured attention, feed lightweight convolutional
decoders for environmental predictions and an MLP head for navigation actions.

B. VLM-driven Hierarchical Planning Dataset

We construct a hierarchical language planning dataset
specifically for instruction-guided navigation missions, lever-
aging advanced Vision—Language Models (VLMs) for multi-
modal understanding and sequence analysis. Our goal is to
provide training data that captures both short-term execution
steps and long-term navigation milestones.

As illustrated in Figure 2, we start from public Vision-
and-Language Navigation (VLN) benchmarks—R2R-CE
(10k episodes) and RxR-CE (20k episodes)—which pro-
vide paired natural language instructions and full image
observation sequences. Each episode is processed with
Gemini 2.5 Pro, guided by a custom prompt template
that specifies the model’s role, defines the mission, outlines
analytical steps, and enforces an explicit output format.
The VLM systematically decomposes each long instruction
into a series of sequential sub-instructions, while identifying
a dense visual chain of keyframes representing navigation
milestones. For paths involving extended travel or sharp
turns, we require the inclusion of intermediate milestones
to maintain visual continuity in the generated plan. This
hierarchical structure enables downstream world models to
better learn both short-term and long-term prediction.

For every annotated episode, the output is standardized to
include: the milestone frame index, the textual description
of the completed sub-instruction, and the upcoming planned
instruction. Post-processing involves filtering incomplete an-
notations, correcting logical inconsistencies in the VLM
outputs, and converting each episode into multiple navigation
segments. We sample waypoints along each trajectory, with
each waypoint forming the endpoint of a segment between
milestones. Each sampled waypoint is assigned a planning

label comprising: (1) a navigation summary (completed sub-
instruction), (2) a future plan (next instruction), and (3) a
language action (forward, left, right, stop).

This pipeline produces approximately 1.3M training sam-
ples from RxR-CE and 0.2M from R2R-CE. To ensure
balanced training data, we down-sample over-represented
straight-motion cases and augment examples involving stop-
ping actions. The final dataset provides richly annotated, bal-
anced samples for training the hierarchical language planning
and predictive modules in NavForesee.

C. Model Architecture

Overall Architecture The overall architecture of Nav-
Foresee 1is illustrated in Figure 3. We adopt Qwen2.5-
VL-3B-Instruct [36], a large-scale vision—language model
with strong multi-modal understanding capabilities, as the
backbone. NavForesee is designed to integrate two com-
plementary functionalities: VLM-based language planning
and World model-based visual prediction. Correspondingly,
we define two primary training objectives: VLM planning
training and world model training. Training data from both
tasks are jointly mixed to ensure that the model preserves its
multi-modal planning ability, while simultaneously extending
its capability to generate visual features. For the VLM
planning training, textual planning data are directly fed into
Qwen for auto-regressive training, leveraging its original text
encoder and image encoder components without modifica-
tion. For the world model training, we introduce an additional
position encoder (pos-encoder) to encode the agent’s relative
position and orientation from image observations. Two sets
of dream queries—corresponding to short- and long-horizon
predictions—are appended to the multi-modal embeddings.



Each set of dream queries includes depth and semantics sub-
queries, enabling dual-horizon prediction. Furthermore, an
action query, alongside the dream queries, is integrated into
the multi-modal inputs and processed by Qwen2.5-VL via a
structured attention mechanism. Lightweight convolutional
layers serve as decoders to transform dream embeddings
into environmental predictions (depth and semantics), while
a simple MLP predicts action outputs (waypoints, orientation
estimates, and arrival flags).

Structured Attention Mask To maintain a clear separation
between short- and long-horizon predictions and to avoid
cross-type contamination, each dream query type (depth and
semantics) is explicitly decomposed into short-horizon and
long-horizon components. As illustrated in Figure 3, we
design a structured attention mask tailored for dual-horizon
prediction. Long-horizon predictions naturally depend on
short-horizon predictions, using them as guidance to ensure
temporal coherence. Mutual attention between depth and
semantics queries is masked to prevent cross-modal leakage
or unintended feature mixing. In contrast, the action query
attends to all available information—including past context
and both horizons of dream queries—enabling it to make
globally consistent navigation predictions.

D. Dual-horizon World Model Prediction

Specifically, to enable accurate dual-horizon environmen-
tal feature prediction, we employ the world model architec-
ture that serves as guidance for learning the inverse dynamics
of a navigation agent. Here, short-term prediction refers
to generating forecasts for k steps ahead, while long-term
prediction targets navigation milestones, corresponding to
an adaptive horizon determined by progress toward the next
milestone.

For visual feature prediction within Qwen2.5-VL, we
introduce two sets of learnable dream queries, namely the
short-term Qg € RE*? and and long-term Q; € RE*d
to, which extract temporally aligned feature embeddings
specialized for prediction at distinct horizons. To enhance the
model’s capability in capturing spatial-temporal correlations
and learning environmental dynamics, we further integrate
position-orientation state embeddings s;_p.; for each in-
put frame through an encoder h(.). These dream queries
are concatenated with textual instruction embeddings ! and
visual observation sequences O;_pr.; and processed by the
Qwen2.5-VL backbone f(.). Specially,

Es = f(l7 Ot—p:t, h(st—H:t)|QS)a
Er = f(l, O—H:t, h(stfH:t)y QS|QL)

where causal attention masking ensures auto-regressive gen-
eration: short-term embeddings are produced first, and long-
term embeddings are conditioned on short-term predictions.

We design lightweight decoders to interpret Ey, and Eg
into predicted depth d,, and high-level semantics c,(e.g.
derived from DINOV2, SAM). Short-term predictions cor-
respond to a fixed horizon k whereas long-term predictions
adaptively extrapolate over M, steps, dependent on the

agent’s progress toward the next milestone:

Pt+k = D(ES) = [dp(t),cp(t)],
pirm, = D(EL) = [dy(t + My), cp(t + My)]

E. Predictive Action Policy Learning

Given two temporally order states o; and o441, the inter-
mediate action a(t) can be inferred via inverse dynamics. We
leverage this principle to learn an action policy conditioned
on the instruction [, historical visual observations O;_ g
and the dual-horizon predictive latent features Fg and Ep,
generated by the world model. To enhance the encoding of
task-relevant context for action prediction, we introduce a
learnable action query (Q,. This query is concatenated with
the dream queries and multi-modal input embeddings to
form a unified action embedding. The Qwen2.5-VL back-
bone processes these embeddings to produce the contextual
representation for action inference, which is subsequently
projected into the action space:

K, = f(l, Oi—H:t» h(st—H:t)a Qs, QL|Qa)
dt:t+k = Minv(ESvEL|Ea)

where FE, is the action embedding and M;nv denotes
the inverse dynamics model. Notably, in our action policy
learning pipeline, the action embedding FE, is extracted
through the Qwen2.5-VL backbone, while action predictions
are primarily conditioned on the dual-horizon predictive
features, ensuring that decisions are informed by both past
observations and forecasted environmental dynamics

F. Close the Planning/Prediction and Action Loop

For VLM planning training, we finetune Qwen2.5-VL
model based on the constructed dataset in an auto-regressive
manner independently to build a powerful model capable of
conducting hierarchical navigation.

For world model prediction and action policy learning,
the training tasks are classified depth prediction, semantic
feature prediction and action prediction. Depth prediction
error Ly is measured using the Scale-invariant Logarithmic
Loss (SiLogLoss) at the pix-level level. The semantics fea-
ture prediction error L. and action error L, are computed
using mean squared error (MSE). The overall training loss
L comprise Ly, L. and L,

L=alLs+ BL.+ L,

where o and (3 are weighting hyperparameters balancing the
tasks.

IV. EXPERIMENTAL EVALUATION

We evaluate our model in continuous environment of the
Habitant simulator on the R2R-CE and RxR-CE datasets.

R2R-CE dataset is derived from the Matterport3D indoor
environments, discretized for path planning but operational-
ized in the Habitat simulator under a continuous navigation
setting. It provides fine-grained, step-by-step natural lan-
guage instructions, allowing for detailed guidance at each
navigation step. In the simulator, the embodied agent can



TABLE I: Comparison with other methods on the Val-Unseen split of R2R-CE and RxR-CE

Method Observation R2R-CE Val-Unseen RxR-CE Val-Unseen
SRGB Pano. Depth Odo NE| OSt SRt SPLt NE| SRt SPL{
HPN+DN* [37] v v v 6.31 40.0 36.0 34.0 - - -
CMA* [38] v v v 6.20 52.0 41.0 36.0 876 265 221
Sim2Sim [39] v v v 6.07 52.0 43.0 36.0 876 265 22.1
GridMM* [8] v v v 511 61.0 49.0 41.0 - - -
DreamWalker* [40] v v v 553 59.0 49.0 44.0 - - -
Reborn* [41] v v v 540 57.0 50.0 46.0 598 48.6 42.0
ETPNav* [42] v v v 471 65.0 57.0 49.0 5.64 547 448
HNR* [9] v v v 442 67.0 61.0 51.0 550 563 46.7
AG-CMTP [43] v v v 790 39.0 23.0 19.0 - - -
R2R-CMTP [43] v v v 790 38.0 26.0 220 - - -
Instruc-Nav [31] v v v 6.89 - 31.0 240 - - -
LAW [44] v v v 6.83 440 350 31.0 1090 8.0 8.0
CM2 [45] v v v 7.02 41.0 340 27.0 - - -
WS-MGMap [46] v v v 6.28 47.0 38.0 34.0 - - -
AO-Planner [47] v v 555 59.0 47.0 33.0 - - -
Seq2Seq [48] v v 777 370 250 220 1210 139 119
CMA [48] v v 7.37 40.0 32.0 30.0 - - -
NA Vid [49] v 547 490 37.0 35.0 - - -
Uni-NA Vid [50] v 5.58 535 47.0 427 6.24 48.7 409
NaVILA [51] v 522 625 540 49.0 6.77 493 440
Stream VLN [52] v 498 642 569 519 6.22 529 46.0
CorrectNav [53] v 424 675 651 623 4.09 693 633
NavForesee(Ours) v 394 784 662 59.7 420 663 532

TABLE II: Performance comparison between VLM planning and dual-horizon world model prediction

Index VLM planning Long-term prediction  Short-term prediction SR 1 OSRT NE | SPL{
1 v v v 66.2% 784% 394  59.7%
2 X v v 488% 755% 5.61 394%
3 v X v 58.6% 764% 447 50.1%
4 X X X 52.6% 674% 5.53 46.7%

execute turns as small as 15° and perceives the scene through
a 90° horizontal field-of-view.

RxR-CE is a large-scale, multilingual VLN dataset com-
prising about 126K human-annotated instructions. Compared
to R2R-CE, RxR-CE covers more diverse and complex tra-
jectories, increasing the difficulty of the navigation tasks. The
agent in this setting uses a coarser minimum turn increment
of 30° and a narrower 79° horizontal field-ofview, which
demands more deliberate movement planning for effective
scene coverage.

We evaluate navigation performance using standard met-
rics including success rate (SR), oracle success rate (OS),
success weighted by path length (SPL), and navigation error
(NE).

A. Comparison with State-of-the-Art Methods

Table 1 reports the performance of the proposed method
compared with other approaches on the R2R-CE and
RxR-CE datasets. Overall, NavForesee delivers competitive
results against state-of-the-art (SOTA) methods. Specifically,
on the val unseen split of the R2R-CE dataset, NavForesee
achieves SOTA performance by improving SR by 1.1%, OSR
by 10.9%, and reducing NE by 0.3 m. This improvement
can be attributed to the integration of the world model
prediction module, which enables the agent to better capture
environmental dynamics, avoid obstacles, and explore the

surroundings more effectively.

In contrast, NavForesee performs slightly worse than
SOTA methods on RxR-CE, indicating limited general-
ization to more complex environments. It is worth not-
ing that we train soly on NavForesee on R2R-CE and
RxR-CE datasets, whereas other methods exploit diverse
and large-scale datasets to enhance generalization. Although
NavForesee does not consistently outperform all baselines, it
achieves the highest OSR across both datasets. This demon-
strates the value of incorporating world model prediction into
VLN agents and implies its promising potential for future
vision-and-language navigation tasks.

B. Ablation Study

As shown in Table II, removing any of the three key
modules—hierarchical VLM planning, long-term prediction,
or short-term prediction—results in clear performance degra-
dation. The full NavForesee model, which combines all mod-
ules, achieves the highest SR (66.2%), OSR (78.4%), lowest
NE (3.94), and best SPL (59.7%), validating the benefit of
their integration. Without VLM planning, the success rate
drops sharply to 48.8% and the SPL decreases by more than
16 points, reflecting the importance of explicit instruction
decomposition and progress tracking for efficient navigation.
Disabling long-term prediction also leads to a noticeable
reduction in SR (58.6%) and higher NE, highlighting the role



Fig. 4: Short-term depth and semantics predictions. From top to bottom: frames with timestamps, future ground truth frames with
timestamps, future depth prediction for future frames, semantics predictions for future frames. Semantic features are DinoV2 features and
visualized by a pretrained segmentation head. Instructions: UP the stairs. Turn to the left and enter into the second open door on the left.
Walk towards the foot of the bed. Turn right and enter the open door to the bathroom

Forecast walking through the kitchen with cabinets on both sides

Turning right into an open space

Dreaming of a bed before entering the bedroom

Fig. 5: NavForesee’s geometric-semantic feature imagination across different motion modes. The model accurately predicts environmental
dynamics in straight motion, generalizes effectively to turning scenarios, and infers detailed object geometry and depth distribution from

minimal visual input, such as a brief glimpse into a room

of milestone foresight in providing strategic guidance over
extended trajectories. When all three modules are removed,
navigation quality deteriorates the most, confirming that
planning and both prediction horizons together are crucial
for accurate, efficient long-horizon navigation.

C. Qualitative Analysis

Figure 4 illustrates the short-term depth and semantic
feature predictions generated by our world model over the
course of a complete navigation episode, forecasting up to
four future steps. Although the predicted depth maps appear
somewhat coarse—owing to the constraints of pixel-level
supervised training on R2R-CE and RxR-CE—they nonethe-
less preserve the scene’s global geometry and spatial layout,
faithfully capturing agent movements such as ascending or
descending staircases, entering and exiting rooms, and mak-
ing sharp or gradual turns. This ability to retain high-level
spatial coherence despite reduced pixel detail ensures that

the model’s predictions remain informative for downstream
navigation decisions. The semantics predictions, obtained via
a pretrained segmentation head, exhibit strong alignment
with ground truth labels, successfully reflecting dynamic
environmental changes in synchrony with the agent’s actions.

Figure 5 further provides detailed examples that showcase
NavForesee’s ability to imaginatively anticipate semantic
features across diverse motion patterns. In addition to de-
livering accurate environment dynamics predictions when
following a straightforward trajectory, NavForesee demon-
strates remarkable generalization by reliably extrapolating
future geometric and semantic structures when performing
more complex navigational behaviors such as turns. In the
final scenario, the agent receives only a brief partial obser-
vation—a quick glance into a room—yet the model is able
to produce a vivid and coherent internal imagination of the
room’s layout. This includes accurately inferring the relative
shape and position of the bed, as well as estimating the depth



distribution across the room, thus indicating its capacity to
reason about unseen spatial regions.

V. CONCLUSION

We proposed NavForesee, a vision—-language naviga-
tion framework that unifies hierarchical language planning
with dual-horizon predictive world modeling. By decom-
posing long instructions into sub-goals and anticipating
both short-term dynamics and long-term milestones, Nav-
Foresee forms an implicit perception—planning and pre-
diction—action loop. Experiments on R2R-CE and RxR-
CE show strong performance—66.2% SR and 78.4% OSR
on R2R-CE—comparable to state-of-the-art despite training
only on public data. Qualitative results further reveal solid
depth and semantics predictions that guide agent decisions
in complex scenarios. These findings highlight the benefit of
equipping embodied agents with foresight: by “foreseeing”
future states, NavForesee effectively fuses language planning
with spatiotemporal imagination to improve visual-language
navigation.
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Supplementary Material

I. IMPLEMENTATION DETAILS
A. Model Architecture

Base Model We employ Qwen2.5-VL-3B-Instruct [36] as
the backbone of NavForesee. It adopts the Qwen2.5 LLM
as its text decoder and integrates a vision encoder. The
vision encoder utilizes a Vision Transformer (ViT) archi-
tecture to encode visual observations, while the text de-
coder is responsible for generating the hierarchical planning
outputs and action trunk predictions. Detailed descriptions
of Qwen2.5-VL can be found in [36]. For hierarchical
planning, we directly use the original multimodal encoders
and text decoder of Qwen2.5-VL without any modifications.
For world model prediction and action policy learning, we
introduce a position encoder to represent the agent’s relative
position and orientation derived from image observations.
Lightweight decoders transform the dream query embeddings
into environmental predictions (depth and semantics), while
a simple MLP predicts action outputs (waypoints, orientation
estimates, and arrival flags).

Dream Query Design Two sets of dream queries (short-term
and long-term), along with an action query, are appended
to the multimodal embeddings. Each set of dream queries
contains depth and semantics subqueries, enabling dual-
horizon prediction. We use DINOv2 and SAM features as
semantic representations. Thus, there are six query subsets
in total—depth, DINOv2, and SAM for both short-term
and long-term horizons—with each subset consisting of 64
tokens. The action query consists of a single token dedicated
to action prediction.

World Model Decoders We design task-specific lightweight
world model decoders to transform dream embeddings into
depth maps, semantic features, and actions. For depth and
semantics predictions, we employ decoder architectures with
identical design: dream embeddings and a set of learnable
masks are processed by a 2-layer ViT-based decoder to pro-
duce predicted features. Additionally, we apply the decoder
from VQ-VAE to render depth features into depth maps.
Action Prediction The action prediction module takes the
action embedding produced by Qwen2.5-VL as input and
generates predicted waypoints, orientation estimates, and
arrival flags. First, a 2-layer transformer processes the action
embedding to capture dependencies on the world model’s
dream embeddings. Then, the processed action embedding
is passed to the action prediction head, which outputs the
final navigation predictions, including waypoints, orientation
estimates, and arrival flags. The action prediction head con-
sists of a simple MLP with two linear layers and a ReLU
activation in between.

B. Training Details

We interleave the VLM planning training data and world
model training data to jointly train NavForesee. The training

batch size is set to 4, and the number of image observations is
flexible, up to a maximum length of 20. Depth and semantic
features are precomputed and loaded during training. We use
the AdamW optimizer with an initial learning rate of 1 x
107°. Depth and semantics predictions are weighted with
a = 0.25 and B = 0.3. The model is trained for a total of
3 epochs on 64 NVIDIA H20 GPUs, with ViT parameters
frozen. The fixed short-term prediction horizon is set to 4,
and the number of predicted waypoints is set to 5.

II. EXPERIMENTAL EVALUATIONS
A. Hierarchical Planning Evaluation

To evaluate the hierarchical planning capabilities of Nav-
Foresee, we conduct experiments on the Val-Unseen split
of the R2R-CE and RxR-CE datasets. An example is il-
lustrated in Figure 6. We perform hierarchical planning for
each step of an episode. NavForesee generates a navigation
summary, plan, and actions strictly following the output
format specified in the prompt template. Apart from the
initial position, NavForesee consistently identifies milestones
along the route, summarizes completed sub-instructions, and
formulates the next sub-instruction in alignment with the
overall instruction context. This demonstrates that Nav-
Foresee effectively leverages its multimodal understanding
capabilities to decompose complex navigation tasks into
manageable sub-goals, thereby enabling more structured and
efficient navigation. Notably, the hierarchical planning mod-
ule is jointly trained with the world model prediction and
action policy learning modules, indicating that NavForesee
maintains strong language planning capabilities even when
extended with additional functionalities. Furthermore, the
hierarchical plans are precise and concise, which greatly
benefits subsequent navigation decisions.

B. Short-term and Long-term Prediction Evaluation

Figure 7 illustrates the short-term and long-term depth
predictions produced by our world model over a complete
navigation episode. Short-term predictions forecast up to four
future steps, whereas long-term predictions extrapolate over
an adaptive horizon determined by progress towards the next
milestone. Compared to short-term predictions, long-term
depth predictions may be less accurate in capturing detailed
depth at milestone locations, since milestone positions are
unknown during inference. At the beginning of the episode,
the long-term predictions effectively capture the scene when
the agent ascends the stairs. As the agent approaches the first
milestone (the doorway), the long-term predictions degrade
slightly, likely due to the increased uncertainty of longer
horizons and the absence of explicit milestone information.
In such cases, long-term predictions tend to track short-term
outputs, because long-term queries can attend to short-term
queries. Nevertheless, the long-term predictions maintain
the overall scene layout and depth distribution, providing



Start Milestonel

Milestone2

: < sostioncs ot tne|  Summary:
Initial state: The robot is Finished going up the stairs
positioned at the bottom of the and is now at the top landing.
stairs.

Plan:

Go up the stairs and straight
forward through the doorway.
Action: Action:
<llefip<lefi><[forwardj><[for cucral> <lefi><|forward}><[forward}>
ward[><|forward|> <forward/><forwardi>

Plan:
Go straight forward through
the doorway ahead.

:,.II—I 2 =B ly-Ba-—4

Milestone3

COT (t=15)

Summary:
T

the bedroom.
Plan:

Goormey. | Move forward across the room
o enter the bathroom on the
right.

<forwardj><{forward></forw
ard[><[forward|><|forward >

End

ummary:
Moved forward across the bedroom
‘and has now entered the doorway on
the right, which Icads into the
‘bathroom.
Plan:
Move forward into the bathroom and.
AT
> <lforwardl> pctis
> <lforwardl> <\fvrwald\><\fnxwmﬂ><\fnrwud4><l o

forward><Jforward >

Summary:

e e Sy
front of the toilet.

Plan:

‘The entire instruction set is.
complete.

Action:

<istopl>

Fig. 6: Hierarchical planning examples generated by NavForesee for the instruction ”Go up the stairs and straight forward the doorway.
Turn right, move forward, and enter the doorway on the right. Move forward into the bedroom and stop in front of the toilet”. From top
to bottom: frames with timestamps, global navigation map, and navigation planning outputs. NavForesee accurately identifies milestones
along the route, summarizes completed sub-instructions, and generates the next sub-instruction in accordance with the instruction context.

Fig. 7: Short-term and long-term depth predictions. From top to bottom: frames with timestamps, future ground truth frames with
timestamps, short-term depth predictions for future frames, and long-term depth predictions for milestones. Instruction: ”Up the stairs.
Turn to the left and enter the second open door on the left. Walk towards the foot of the bed. Turn right and enter the open door to the
bathroom.”

valuable guidance for strategic navigation. This demonstrates
that NavForesee’s world model effectively anticipates en-
vironmental changes over both short and long horizons,
enhancing the agent’s planning and action capabilities in
complex scenarios.

C. Ablation Study on Depth and Semantics Predictions

We conduct ablation studies to evaluate the individual
contributions of depth and semantics predictions in the world
model. As shown in Table III, removing either depth or
semantics predictions results in a clear performance drop.
The full NavForesee model, which integrates both depth and

TABLE III: Performance comparison between depth prediction and
semantics prediction

Tndex Depth  Semantics SR T OSRT NEJ]  SPLT

1 4 v 662% 78.4% 394  59.7%
2 X 4 61.8% 76.71% 437  54.9%
3 4 X 60.0% 762% 459 52.9%

semantics predictions, achieves the highest SR (66.2%), OSR
(78.4%), lowest NE (3.94), and best SPL (59.7%), validating
the benefit of their combination. Without depth prediction,
the SR drops to 61.8% and SPL decreases by 4.8 points,



highlighting the importance of depth information for spatial
reasoning and obstacle avoidance. Disabling semantics pre-
dictions leads to an even larger SR reduction (60.0%) and
higher NE, underscoring the critical role of semantic features
in recognizing landmarks and guiding navigation. These
findings confirm that both depth and semantics predictions
are essential for accurate and efficient navigation.



